Advertisement

Mean Distance Parameter Based Facial Expression Recognition System

  • Pushpa KesarwaniEmail author
  • Akhilesh Kumar Choudhary
  • Arun Kumar Misra
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 835)

Abstract

Human-like facial expression recognition is the ultimate goal of all automatic facial expression recognition system. Facial expression recognition is mostly achieved by comparing the test image of a person with his/her neutral image. In this paper, “mean distance parameter” (MDP) has been proposed, and is used to recognize the facial expression. In this proposed methodology, database is not required to train the system for expression recognition, but neutral images from the database have been used only once for calculating the mean distance parameter. After establishment of the mean distance parameter based on region of interest (ROI) height, action units (AUs) have been detected by comparing it with the test image’s fiducial point distance. Facial expression recognition has been performed based on these detected AUs in the test image, and recognition rate of 96.66% has been achieved for Cohn-Kanade database.

Keywords

Facial expressions recognition Facial action coding system Action units Mean distance parameter 

References

  1. 1.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 12, 2037–2041 (2006)CrossRefGoogle Scholar
  2. 2.
    Mase, K.: Recognition of facial expression from optical flow. IEICE Trans. (E) 74, 3474–3483 (1991)Google Scholar
  3. 3.
    Friesen, E., Ekman, P.: Facial action coding system: a technique for the measurement of facial movement. Palo Alto (1978)Google Scholar
  4. 4.
    Bartlett, M.S., Hager, J.C., Ekman, P., Sejnowski, T.J.: Measuring facial expressions by computer image analysis. Psychophysiology 36(2), 253–263 (1999)CrossRefGoogle Scholar
  5. 5.
    Donato, G., Bartlett, M.S., Hager, J.C., Ekman, P., Sejnowski, T.J.: Classifying facial actions. IEEE Trans. Pattern Anal. Mach. Intell. 21(10), 974 (1999)CrossRefGoogle Scholar
  6. 6.
    Dasari, S.D., Dasari, S.: Face recognition using Tchebichef moments. Int. J. Inf. Netw. Secur. 1(4), 243 (2012)Google Scholar
  7. 7.
    Atta, R., Ghanbari, M.: Face recognition based on DCT pyramid feature extraction. In: 2010 3rd International Congress on Image and Signal Processing (CISP), vol. 2, pp. 934–938. IEEE, October 2010Google Scholar
  8. 8.
    Bettadapura, V.: Face expression recognition and analysis: the state of the art. arXiv preprint arXiv:1203.6722 (2012)
  9. 9.
    Fox, E., et al.: Facial expressions of emotion: are angry faces detected more efficiently? Cogn. Emot. 14(1), 61–92 (2000)CrossRefGoogle Scholar
  10. 10.
    Matsumoto, D., et al.: Facial expressions of emotion. In: Lewis, M., Haviland-Jones, J.M., Barrett, L.F. (eds.) Handbook of Emotions, 3rd edn, pp. 211–234. Macmillan, New York (2008)Google Scholar
  11. 11.
    Choi, J.Y., Ro, Y.M., Plataniotis, K.N.: Boosting color feature selection for color faces recognition. IEEE Trans. Image Process. 20(5), 1425–1434 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hamm, J., et al.: Automated facial action coding system for dynamic analysis of facial expressions in neuropsychiatric disorders. J. Neurosci. Methods 200(2), 237–256 (2011)CrossRefGoogle Scholar
  13. 13.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, no. 50, pp. 10–5244, August 1988Google Scholar
  14. 14.
    Cohen, I.: Automatic facial expression recognition from video sequences using temporal information. MS thesis. University of Illinois at Urbana-Champaign (2000)Google Scholar
  15. 15.
    Starostenko, O., Cortés, X., Sánchez, J.A., Alarcon-Aquino, V.: Unobtrusive emotion sensing and interpretation in smart environment. J. Ambient Intell. Smart Environ. 7(1), 59–83 (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pushpa Kesarwani
    • 1
    Email author
  • Akhilesh Kumar Choudhary
    • 3
  • Arun Kumar Misra
    • 2
  1. 1.Department of Information TechnologyG.L. Bajaj Institute of Technology and ManagementGreater NoidaIndia
  2. 2.Faculty of Computer Science and EngineeringMotilal Nehru National Institute of TechnologyAllahabadIndia
  3. 3.Department of Mobile ServicesBharat Sanchar Nigam LimitedGhaziabadIndia

Personalised recommendations