Advertisement

Using Lucas-Kanade Algorithms to Measure Human Movement

  • Yao Mi
  • Prakash Kumar Bipin
  • Rajeev Kumar ShahEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 835)

Abstract

As an important part of clinical studies, Motion estimation knowledge is widely used to gather useful movement information for medical professionals to find out the best treatment for chronic pain. The purpose of this project is to develop a program to analyze patients’ movements and therefore to improve the treatment of patients. Initially, the basic Luca-Kanade algorithm was implemented. And this program was primarily improved upon by setting a threshold to decrease the noise, and then by selecting feature points to process. Additionally, the resizing method was adopted to further improve the whole system. The solution successfully meets the project aims as the system performs much better than the original one with higher accuracy and speed, while the motion trail can be represented clearly by multiple optical flow fields and the useful information can be detected from the video through all the improved implementations.

Keywords

Motion estimation Lucas-Kanade Edge detector Optical flow field 

References

  1. Alex, D.S., Wahi, A.: BSFD Background subtraction frame difference algorithm for moving object detection and extraction. J. Theor. Appl. Inf. Technol. 60(3), 623–628 (2014)Google Scholar
  2. Baker, S., Matthews, I.: Lucas-Kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56(3), 221–255 (2004)CrossRefGoogle Scholar
  3. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets horn/Schunck: combining local and global optic flow methods. Int. J. Comput. Vis. 61(3), 1–21 (2005)CrossRefGoogle Scholar
  4. Cao, L., Ramesh, B.: Agile requirements engineering practices: an empirical study. IEEE Softw. 25(1), 60–67 (2008)CrossRefGoogle Scholar
  5. Ding, L., Goshtasby, A.: On the canny edge detector. Pattern Recogn. 34(3), 721–725 (2001)CrossRefGoogle Scholar
  6. Fortun, D., Bouthemy, P., Kervrann, C.: Optical flow modelling and computation: a survey. Comput. Vis. Image Underst. 134, 1–21 (2015)CrossRefGoogle Scholar
  7. Gibson, J.J.: The visual perception of objective motion and subjective movement. Psychol. Rev. 101(2), 318–323 (1994)CrossRefGoogle Scholar
  8. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital image processing using MATLAB. Dorling Kindersley Pvt, India (2006)Google Scholar
  9. Heath, M., Sarkar, S., Sanocki, T., Bowyer, K.: Comparison of edge detectors. Comput. Vis. Image Underst. 69(1), 38–54 (1998)CrossRefGoogle Scholar
  10. Huang, J.-C., Hsieh, W.-S.: Automatic feature-based global motion estimation in video sequences. IEEE Trans. Consum. Electron. 50(3), 911–915 (2004)CrossRefGoogle Scholar
  11. Huang, T.-C., Chang, C.-K., Liao, C.-H., Ho, Y.J.: Quantification of blood flow in internal cerebral artery by optical flow method on digital subtraction angiography in comparison with time-of flight magnetic resonance angiography. PLoS ONE 8(1), e54678 (2013)CrossRefGoogle Scholar
  12. Irani, M., Anandan, P.: About direct methods. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 267–277. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44480-7_18CrossRefGoogle Scholar
  13. Iwata, K., Kikuta, H.: Measurement of dynamic flow field by optical computed tomography with shearing interferometers. Opt. Rev. 7(5), 415–419 (2000)CrossRefGoogle Scholar
  14. Ko, B., Kim, S., Nam, J.: Image resizing using saliency strength map and seam carving for white blood cell analysis. Biomed. Eng. Online 9(1), 54 (2010)CrossRefGoogle Scholar
  15. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI, pp. 674–679 (1981)Google Scholar
  16. Lu, J., Liou, M.L.: A simple and efficient search algorithm for block-matching motion estimation. IEEE Trans. Circ. Syst. Video Technol. 7(2), 429–433 (1997)CrossRefGoogle Scholar
  17. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104(2–3), 90–126 (2006)CrossRefGoogle Scholar
  18. Nguyen, V.A., Tan, Y.: Fast block-based motion estimation using integral frames. IEEE Signal Process. Lett. 11(9), 744–747 (2004)CrossRefGoogle Scholar
  19. Niu, Y., Xu, Z., Che, X.: Dynamically removing false features in pyramidal Lucas-Kanade registration. IEEE Trans. Image Process. 23(8), 3535–3544 (2014)MathSciNetCrossRefGoogle Scholar
  20. Torr, P.H.S., Zisserman, A.: Feature based methods for structure and motion estimation. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 278–294. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44480-7_19CrossRefGoogle Scholar
  21. Singla, N.: Motion detection based on frame difference method. Int. J. Inf. Comput. Technol. 4(0974–2239), 1559–1565 (2014)Google Scholar
  22. Wang, Z., Ben Salah, M., Zhang, H.: Object joint detection and tracking using adaptive multiple motion models. Vis. Comput. 30(2), 173–187 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yao Mi
    • 1
  • Prakash Kumar Bipin
    • 2
  • Rajeev Kumar Shah
    • 3
    Email author
  1. 1.Chengdu Neusoft UniversityChengduChina
  2. 2.Wuhan University of TechnologyWuhanChina
  3. 3.University of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations