Fabrication and LBM-Modeling of Directional Fluid Transport on Low-Cost Electro-Osmotic Flow Device

  • T. PravinrajEmail author
  • Rajendra Patrikar
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 892)


In this work, we have presented a low-cost fabrication and modeling of an electro-osmotic flow (EOF) device. The presented fabrication approach eliminates the need of expensive UV lithography and plasma setups. The polydimethylsiloxane (PDMS) microfluidic device for EOF is fabricated using simple printed circuit board (PCB) as a mold. The device is bonded with glass using adhesive bonding technology hence eliminates the need for plasma. The in-house low cost microfluidic characterization setup is used for experimental study. The obtained characteristics are modeled by the mesoscopic lattice Boltzmann method (LBM) in which the Poison Boltzmann equations is successfully coupled to capture the electrical double layer (EDL) physics. From the obtained results, it is shown that the directional transport of a bulk fluid can be achieved by EOF mechanism by suitably switching the electrodes. The experimental velocity characteristics show good agreement with the simulated results. Thus, easy coupling of LBM can be used as a tool to design and investigate such MEMS devices.


Electro-osmotic flow Microfluidics PCB mold Lattice Boltzmann method Poison-Boltzmann equation 


  1. 1.
    Luka, G., et al.: Microfluidics integrated biosensors: a leading technology towards lab-on-a-chip and sensing applications. Sensors 15(12), 30011–30031 (2015)CrossRefGoogle Scholar
  2. 2.
    Srinivasan, V., Pamula, V.K., Fair, R.B.: An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4(4), 310–315 (2004)CrossRefGoogle Scholar
  3. 3.
    Stone, H.A., Stroock, A.D., Ajdari, A.: Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004)CrossRefGoogle Scholar
  4. 4.
    Kirby, B.J.: Micro-and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  5. 5.
    Nguyen, N.T., Huang, X., Chuan, T.K.: MEMS-micropumps: a review. J. Fluids Eng. 124(2), 384–392 (2002)CrossRefGoogle Scholar
  6. 6.
    Friend, J., Yeo, L.: Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 4(2), 026502 (2010)CrossRefGoogle Scholar
  7. 7.
    Howard, J.L., Hanssen, A.D.: Principles of a clean operating room environment. J. Arthropl. 22(7), 6–11 (2007)CrossRefGoogle Scholar
  8. 8.
    Kontakis, K., Petropoulos, A., Kaltsas, G., Speliotis, T., Gogolides, E.: A novel microfluidic integration technology for PCB-based devices: application to microflow sensing. Microelectron. Eng. 86(4–6), 1382–1384 (2009)CrossRefGoogle Scholar
  9. 9.
    Mata, A., Fleischman, A.J., Roy, S.: Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevices 7(4), 81–293 (2005)CrossRefGoogle Scholar
  10. 10.
    Lam, E., Ngo, T.: Manufacturing a PDMS microfluidic device via a Silicon Wafer Master. Harvard-MIT Div. Health Sci. Technol. HST. J., 400 (2007)Google Scholar
  11. 11.
    Bhattacharya, S., Datta, A., Berg, J.M., Gangopadhyay, S.: Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J. Microelectromech. Syst. 14(3), 590–597 (2005)CrossRefGoogle Scholar
  12. 12.
    Phillips, J.C., et al.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)CrossRefGoogle Scholar
  13. 13.
    Gupta, A., Matharoo, H.S., Makkar, D., Kumar, R.: Droplet formation via squeezing mechanism in a microfluidic flow-focusing device. Comput. Fluids 100, 218–226 (2014)CrossRefGoogle Scholar
  14. 14.
    Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30(1), 329–364 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pravinraj, T., Patrikar, R.: Splitting and transport of a droplet with no external actuation force for lab on chip devices. In: Kaushik, B.K., Dasgupta, S., Singh, V. (eds.) VDAT 2017. CCIS, vol. 711, pp. 707–717. Springer, Singapore (2017). Scholar
  16. 16.
    Pravinraj, T., Patrikar, R.: Modelling and investigation of partial wetting surfaces for drop dynamics using lattice Boltzmann method. Appl. Surf. Sci. 409, 214–222 (2017)CrossRefGoogle Scholar
  17. 17.
    Aidun, C.K., Clausen, J.R.: Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439–472 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Herr, A.E., Molho, J.I., Santiago, J.G., Mungal, M.G., Kenny, T.W., Garguilo, M.G.: Electroosmotic capillary ow with nonuniform zeta potential. Anal. Chem. 72(5), 1053–1057 (2000)CrossRefGoogle Scholar
  19. 19.
    Li, D.: Electrokinetics in Microfluidics. Elsevier, New York (2004)Google Scholar
  20. 20.
    Mohammadipour, O.R., Niazmand, H.: Numerical simulation of a at electroosmotic driven flow in the presence of a charged mid-plate. Int. J. Mod. Phys. C 26(7), 1550078 (2015)CrossRefGoogle Scholar
  21. 21.
    Wu, H., Huang, B., Zare, R.N.: Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding. Lab Chip 5(12), 1393–1398 (2005)CrossRefGoogle Scholar
  22. 22.
    Jain, V., Raj, T.P., Deshmukh, R., Patrikar, R.: Design, fabrication and characterization of low cost printed circuit board based EWOD device for digital microfluidics applications. Microsyst. Technol. 23(2), 389–397 (2017)CrossRefGoogle Scholar
  23. 23.
    Hecht, M., Harting, J.: Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann simulations. J. Stat. Mech. Theory Exp. 1, P01018 (2010)Google Scholar
  24. 24.
    Li, L., Mei, R., Klausner, J.F.: Lattice Boltzmann models for the convection diffusion equation: D2Q5 vs D2Q9. Int. J. Heat Mass Transf. 108, 41–62 (2017)CrossRefGoogle Scholar
  25. 25.
    He, X., Luo, L.S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56(6), 6811 (1997)CrossRefGoogle Scholar
  26. 26.
    Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511 (1954)CrossRefGoogle Scholar
  27. 27.
    Wang, J., Wang, M., Li, Z.: Lattice Poisson Boltzmann simulations of electro-osmotic flows in microchannels. J. Colloid Interface Sci. 296(2), 729–736 (2006)CrossRefGoogle Scholar
  28. 28.
    Chai, Z., Shi, B.: A novel lattice Boltzmann model for the Poisson equation. Appl. Math. Model. 32(10), 2050–2058 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Center for VLSI and NanotechnologyNagpurIndia

Personalised recommendations