Advertisement

Quantum Domain Design of Clifford+T-Based Bidirectional Barrel Shifter

  • Laxmidhar BiswalEmail author
  • Anirban Bhattacharjee
  • Rakesh Das
  • Gopinath Thirunavukarasu
  • Hafizur Rahaman
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 892)

Abstract

The prime objective behind the synthesis of quantum circuits in the field of quantum computing is to obtain so-called quantum supremacy where many intractable problems can be solved with high accuracy and fidelity for which no classical algorithm exists as of now. To suppress inherent noise, the fault tolerant circuit becomes an unavoidable feature. Fault tolerant quantum circuit demands high threshold quantum error correction code, such as surface code. The Clifford+T group with surface code provides universal gates to design quantum circuits.

On the other hand, many key computational operations like arithmetic and logical operation, address decoding and indexing requires shifting, rotating of data in unidirectional as well as bidirectional way, which can be achieved by using shift resistor with multiple cycles. However, the barrel shifter can be used to shift or rotate multiple bits in one cycle that leads to faster computation. In this conjecture, we have proposed a fault tolerant quantum barrel shifter using Clifford+T which will be relevant to quantum computing. Towards the end of this research paper, we have also evaluated some cost parameters like T-depth and T-count associated with the performance of quantum circuit.

Keywords

Barrel shifter T-count T-depth 

References

  1. 1.
    Tharakan, G.M., Kang, S.M.: A new design of a fast barrel switch network. IEEE J. Solid-State Circuits 28(2), 217–221 (1992)CrossRefGoogle Scholar
  2. 2.
    Moore, G.E.: Cramming more components onto integrated circuits. Electronics, 19 April 1965. Accessed 01 July 2016Google Scholar
  3. 3.
    Farhi, E., Harrow, A.W.: Quantum supremacy through the quantum approximate optimization algorithm. arXiv preprint arXiv:1602.07674 (2016)
  4. 4.
    Haffner, H., et al.: Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005)CrossRefGoogle Scholar
  5. 5.
    Laforest, M., et al.: Using error correction to determine the noise model. Phys. Rev. A 75(1), 133–137 (2007)CrossRefGoogle Scholar
  6. 6.
    Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Develop. 17, 525 (1973)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Steane, A.: Quantum Computing and Error Correction. Decoherence and its implications in quantum computation and information transfer. In: Gonis, Turchi (eds.) pp. 284-298. IOS Press, Amsterdam (2001). quant-ph/0304016Google Scholar
  8. 8.
    Yoder, T.J., Kim, I.H.: The surface code with a twist. Quantum 1, 2 (2017)CrossRefGoogle Scholar
  9. 9.
    Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012)CrossRefGoogle Scholar
  10. 10.
    Biswal, L., Bandyopadhyay, R., Wille, R., Drechsler, R., Rahaman, H.: Improving the realization of multiple-control Toffoli gates using the NCVW quantum gate library. In: 29th International Conference on VLSI Design (VLSID), pp. 573–574 (2016)Google Scholar
  11. 11.
    Buhrman, H., et al.: New limits on fault tolerant quantum computation. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, pp. 411–419 (2006)Google Scholar
  12. 12.
    Selinger, P.: Quantum circuits of T-depth one. Phys. Rev. A 87 (2013). Article ID 042302Google Scholar
  13. 13.
    Amy, M., Maslov, D., Mosca, M.: Polynomial-time T-depth optimization of Clifford+T circuits via Matroid Partitioning. e-print arXiv: 1303.2042, March 2013Google Scholar
  14. 14.
    Sasanian, Z., Wille, R., Miller, D.M.: Realizing reversible circuits using a new class of quantum gates. In: Proceedings of Design Automation Conference, pp. 36–41 (2012)Google Scholar
  15. 15.
    Gorgin, S., Kaivani, A.: Reversible barrel shifters. In: Proceedings of 2007 International Conference on Computer Systems and Applications, Amman, May 2007, pp. 479–483 (2007)Google Scholar
  16. 16.
    Hashmi, I., Babu, H.: An efficient design of a reversible barrel shifter. In: 2010 23rd International Conference on VLSI Design, VLSID 2010, January 2010, pp. 93–98 2010Google Scholar
  17. 17.
    Koushandeh, E., Haghparast, M.: A beginning in the design of nanometric fault tolerant reversible barrel shifter. Aust. J. Basic Appl. Sci. 7(9), 1110–1115 (2011)Google Scholar
  18. 18.
    Anjaneyulu, O., Pradeep, T., Reddy, K.: Design of an efficient reversible logic based bidirectional barrel shifter. Int. J. Electron. Signals Syst. 2, 48–53 (2012)Google Scholar
  19. 19.
    Shamsujjoha, M., Babu, H.M.H., Jamal, L., Chowdhury, A.R.: Design of a fault tolerant reversible compact unidirectional barrel shifter. In International Conference on VLSI Design, pp. 103–108 (2013)Google Scholar
  20. 20.
    Thapliyal, H., Bhatt, A., Ranganathan, N.: A new CRL gate as super class of Fredkin gate to design reversible quantum circuits. In: International Midwest Symposium on Circuits and Systems, pp. 1067–1070 (2013)Google Scholar
  21. 21.
    Mitra, S.K., Chowdhury, A.R.: Optimized logarithmic barrel shifter in reversible logic synthesis. In: 28th International Conference on VLSI Design and 2015 14th International Conference on Embedded Systems (2015)Google Scholar
  22. 22.
    Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. CAD Integr. Circuits Syst. 32(6), 818–830 (2013)CrossRefGoogle Scholar
  23. 23.
    Soeken, M., Miller, M., Drechsler, R.: On quantum circuits employing roots of the Pauli matrices. Phys. Rev. A 88, 042322 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Laxmidhar Biswal
    • 1
    Email author
  • Anirban Bhattacharjee
    • 1
  • Rakesh Das
    • 1
  • Gopinath Thirunavukarasu
    • 1
  • Hafizur Rahaman
    • 1
  1. 1.Indian Institute of Engineering Science and Technology ShibpurHowrahIndia

Personalised recommendations