Advertisement

Performance Analysis of Graphene Based Optical Interconnect at Nanoscale Technology

  • Balkrishna ChoubeyEmail author
  • Vijay Rao Kumbhare
  • Manoj Kumar Majumder
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 892)

Abstract

In the modern technology era, interconnect is the key element for designing integrated circuits that provides on-chip and off-chip communication path for various systems. The primary challenges for modeling interconnect are reduced propagation delay, power dissipation, and its power delay product at advanced technology. This paper critically addresses the performance of optical interconnects using equivalent electrical model that comprises of different composite materials. Using industry standard HSPICE, the propagation delay and power dissipation characteristics of graphene nanoribbon have been compared with other composite materials. It has been observed that the propagation delay for graphene nanoribbon can be improved by 99.91% as compared to other composite materials. The power delay product of the proposed graphene based interconnect model is 59.73% lesser compared to other composite materials at 22 nm technology node.

Keywords

Optical interconnect Graphene nanoribbons Propagation delay Power dissipation Power delay product (PDP) 

References

  1. 1.
    Majumder, M.K., Kumar, J., Kaushik, B.K.: Process-induced delay variation in SWCNT, MWCNT, and mixed CNT interconnects. IETE J. Res. 61(5), 533–540 (2015)CrossRefGoogle Scholar
  2. 2.
    Kaushik, B.K., Majumder, M.K., Kumar, V.R.: Carbon nanotube based 3-D interconnects - a reality or distant dream. IEEE Circuits Syst. Mag. 14(4), 16–35 (2014)CrossRefGoogle Scholar
  3. 3.
    Sallah, S.S.B., Ali, S.H.M., Menon, P.S., Juhari, N., Islam, S.: Implementation of on-chip optical interconnect in high speed digital circuit: two-stage CMOS buffer. Asian J. Sci. Res. 10(1), 50–55 (2017)Google Scholar
  4. 4.
    West, A.R.: Magnesium doped Lithium Niobate: some comments on stoichiometry, structure and property. Jpn. J. Appl. Phys. 31(5), 1424–1425 (1992)CrossRefGoogle Scholar
  5. 5.
    Cataldi, U., Cerminara, P., De Sio, L., Caputo, R., Umeton, C.P.: Fabrication and characterization of stretchable PDMS structures doped with Au Nanoparticles. Mol. Cryst. Liq. Cryst. 558(1), 22–27 (2012)CrossRefGoogle Scholar
  6. 6.
    Ma, X., Su, X., Zhou, B., Zhao, X., Tian, Y., Wang, Z.: Synthesis and friction properties of Copper/PMMA composites by soapless emulsion polymerization. J. Appl. Polym. Sci. 122, 2837–2842 (2011)CrossRefGoogle Scholar
  7. 7.
    Li, X., et al.: Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 4, 021306–021331 (2017)CrossRefGoogle Scholar
  8. 8.
    Morozov, S.V., et al.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100(1), 01662–01664 (2008)CrossRefGoogle Scholar
  9. 9.
    Xu, C., Li, H., Banerjee, K.: Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Devices 56(8), 1567–1578 (2009)CrossRefGoogle Scholar
  10. 10.
    Li, H., Xu, C., Srivastava, N., Banerjee, K.: Carbon nanomaterials for next-generation interconnects and passives: physics, status, and prospects. IEEE Trans. Electron Devices 56(9), 1799–1821 (2009)CrossRefGoogle Scholar
  11. 11.
    Cui, J.P., Zhao, W.S., Yin, W.Y., Hu, J.: Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 54(1), 126–132 (2012)CrossRefGoogle Scholar
  12. 12.
    Watson, M.D., Ashley, P.R., Guenthner, A.J., Abushagur, M.A.G.: Modeling of electrooptic polymer electrical characteristics in a three-layer optical waveguide modulator. IEEE J. Quantum Electron. 41(4), 589–595 (2005)CrossRefGoogle Scholar
  13. 13.
    Liu, W., Wang, Y., Feng, X., Huang, Y., Yang, H.: Exploration of electrical and novel optical chip-to-chip interconnects. IEEE Design Test 31(5), 28–35 (2014)CrossRefGoogle Scholar
  14. 14.
    Steinhogl, W., Schindler, G., Steinlesberger, G., Engelhardt, M.: Size-dependent resistivity of metallic wires in the mesoscopic range. Phys. Rev. B 66 (2002). 075414–4Google Scholar
  15. 15.
    Tong, X.C.: Advanced Materials for Integrated Optical Waveguides. Springer Series in Advanced Microelectronics, vol. 46, 1st edn. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-319-01550-7CrossRefGoogle Scholar
  16. 16.
    Mark, J. E.: Polymer Data Handbook. Oxford University press, (1999)Google Scholar
  17. 17.
    Gall, D.: Electron mean free path in elemental metal. J. Appl. Phys. 119, 085101–085105 (2016)CrossRefGoogle Scholar
  18. 18.
    Grote, J.G., Jetts, J.S., Nelson, R.L., Hopkins, F.K.: Effect of conductivity and dielectric on the modulation voltage for optoelectronic devices based on nonlinear polymers. Opt. Eng. 40(11), 2464–2473 (2001). Society of Photo-Optical Instrumentation EngineersCrossRefGoogle Scholar
  19. 19.
    Nasiri, S.H., Faez, R., Moravvej-Farshi, M.K.: Compact formulae for number of conduction channels in various types of graphene nanoribbons at various temperatures. Mod. Phys. Lett. B 26(1) (2012). 1150004–5CrossRefGoogle Scholar
  20. 20.
    Gupta, P., Kumar, G.: Analysis of single wall carbon nanotubes interconnect & comparison with copper interconnects at different technology nodes. Int. J. Sci. Eng. Res. 5(5), 579–583 (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Balkrishna Choubey
    • 1
    Email author
  • Vijay Rao Kumbhare
    • 2
  • Manoj Kumar Majumder
    • 2
  1. 1.Chhattisgarh Swami Vivekanand Technical UniversityBhilaiIndia
  2. 2.Dr. S. P. Mukherjee International Institute of Information TechnologyNaya RaipurIndia

Personalised recommendations