Advertisement

A Novel Countermeasure Against Differential Scan Attack in AES Algorithm

  • Jayesh PopatEmail author
  • Usha Mehta
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 892)

Abstract

The Design for Testability (specifically scan designs) is standard testing techniques for Digital cores for achieving high fault coverage and to provide better controllability and observability. However, such test architectures in the chip containing secret data mostly becomes the instrumental for secret information leakage. The attacker may use different implementation attacks to leak the secret data. In this paper, we first analyse the existing scan designs from security perspective. We demonstrated that how the secret key is retrieved by differential scan attack (DSA) in case of symmetric encryption standards (AES). Furthermore, it is also shown that AES along with time compactor also fails to provide sufficient security. We then propose novel prevention mechanism, Modular Exponentiation Secure Scheme (ME-SS), which clears the insecure states of all the existing techniques. Our experimental results show that the proposed countermeasures can effectively insulate all the information related to cipher key from DSA.

Keywords

DFT AES Differential Scan Attack (DSA) MISR Modular Exponentiation Secure Scheme Cipher key 

Notes

Acknowledgment

We are thankful to Research Progress Committee members Dr. K.S. Dasgupta and Dr. Virendra Singh for their review, insightful comments and constructive suggestions.

References

  1. 1.
    Hurst, S.L.: VLSI Testing: Digital and Mixed Analogue/Digital Techniques. IEE, London (1998)CrossRefGoogle Scholar
  2. 2.
    Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C. Wiley, Hoboken (1996)zbMATHGoogle Scholar
  3. 3.
    Nara, R., Satoh, K., Yanagisawa, M., Ohtsuki, T., Togawa, N.: Scan-based side-channel attack against RSA cryptosystems using scan signatures. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E93-A(12), 2481–2489 (2010)CrossRefGoogle Scholar
  4. 4.
    Liu, Y., Wu, K., Karri, R.: Scan-based attacks on linear feedback shift register based stream ciphers. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 16(2), 1–15 (2011)CrossRefGoogle Scholar
  5. 5.
    Nara, R., Togawa, N., Yanagisawa, M., Ohtsuki, T.: Scan-based attack against ellipticcurve cryptosystems. In: 15th IEEE Asia and South Pacific Design Automation Conference (ASP-DAC10), pp. 407–412 (2010)Google Scholar
  6. 6.
    Yang, B., Wu, K., Karri, R.: Scan based side channel attack on dedicated hardware implementations of data encryption standard. In: Proceedings of IEEE International Test Conference, pp. 339– 344 (2004)Google Scholar
  7. 7.
    Yang, B., Wu, K., Karri, R.: Secure scan: a design-for-test architecture for cryptochips. IEEE Trans. Comput. Aided Des. Integr. Circu. Syst. 25(10), 2287–2293 (2006)CrossRefGoogle Scholar
  8. 8.
    Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68697-5_9CrossRefGoogle Scholar
  9. 9.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_25CrossRefGoogle Scholar
  10. 10.
    Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and counter-measures for smart cards. In: Attali, I., Jensen, T.P. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45418-7_17CrossRefzbMATHGoogle Scholar
  11. 11.
    Kommerling, O., Kuhn, M.G.: Design principles for tamper-resistant smartcardprocessors. In: Proceedings of the USENIX Workshop on Smartcard Technology, p. 22. USENIX Association, Berkeley (1999)Google Scholar
  12. 12.
    Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.-P.: Fault attacks on RSA with CRT: concrete results and practical countermeasures. In: Kaliski, B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36400-5_20CrossRefGoogle Scholar
  13. 13.
    Endo, S., Sugawara, T., Homma, N., Aoki, T., Satoh, A.: An on-chip glitchy clock generator for testing fault injection attacks. J. Cryptogr. Eng. 1, 265–270 (2011)CrossRefGoogle Scholar
  14. 14.
    Skorobogatov, S.: Low temperature data remanence in static RAM. University of Cambridge, Computer Laboratory, Technical Report UCAM-CL-TR-536, June 2002. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf
  15. 15.
    Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski, B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36400-5_2CrossRefGoogle Scholar
  16. 16.
    Schmidt, J.-M., Hutter, M.: Optical and EM fault-attacks on CRT-based RSA: concrete results. In: Karl, J.W., Posch, C. (eds.) Austrochip 2007, 15th Austrian Workhop on Microelectronics, 11 October 2007, Graz, Austria, Proceedings, pp. 61–67. Verlag der Technischen Universität Graz, Graz (2007)Google Scholar
  17. 17.
    DaRolt, J., Di Natale, G., Flottes, M.L., Rouzeyre, B.: Scan attacks and countermeasures in presence of scan response compactors. In: Sixteenth IEEE European Test Symposium, Trondheim, pp. 19–24 (2011)Google Scholar
  18. 18.
    Da Rolt, J., Di Natale, G., Flottes, M.L., Rouzeyre, B.: Are advanced DfT structures sufficient for preventing scan-attacks? In: IEEE 30th VLSI Test Symposium (VTS), Hyatt Maui, HI, pp. 246–251 (2012)Google Scholar
  19. 19.
    Ege, B., Das, A., Gosh, S., Verbauwhede, I.: Differential scan attack on AESwith X-tolerant and X-masked test response compactor. In: 2012 15th Euromicro Conference on Digital System Design (DSD), pp. 545–552. IEEE (2012)Google Scholar
  20. 20.
    Natale, G.D., Doulcier, M., Flottes, M.L., Rouzeyre, B.: Self-test techniques for crypto-devices. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18(2), 329–333 (2010)CrossRefGoogle Scholar
  21. 21.
    Da Rolt, J., Di Natale, G., Flottes, M.L., Rouzeyre, B.: On-chip test comparison for protecting confidential data in secure ICS. In: 2012 17th IEEE European Test Symposium (ETS), p. 1, May 2012Google Scholar
  22. 22.
    Sengar, G., Mukhopadhayay, D., Roy Chowdhury, D.: An efficient approach to develop secure scan tree for crypto-hardware. In: International Conference on Advanced Computing and Communications, ADCOM 2007, pp. 21–26, December 2007Google Scholar
  23. 23.
    Das, A., Ege, B., Ghosh, S., Batina, L., Verbauwhede, I.: Security analysis of industrial test compression schemes. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(12), 1966–1977 (2013)CrossRefGoogle Scholar
  24. 24.
    Kalaiselvi, K., Mangalam, H.: Power efficient and high-performance VLSI architecture for AES algorithm. J. Electr. Syst. Inf. Technol. 2(2), 178–183 (2015)Google Scholar
  25. 25.
    Ahlawat, S., Vaghani, D., Tudu, J., Singh, V.: On securing scan design from scan-based side-channel attacks. In: 2017 IEEE 26th Asian Test Symposium (ATS), pp. 58–63. IEEE (2017)Google Scholar
  26. 26.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of TechnologyNirma UniversityAhmedabadIndia

Personalised recommendations