Continuous Flow Microfluidic Channel Design for Blood Plasma Separation
Conference paper
First Online:
Abstract
Various clinical blood diagnostics tests are performed on plasma, necessitating an efficient microfluidic device for blood plasma separation. Microfluidics devices are being explored for such applications and many of them are successfully deployed. This work demonstrates a passive microchannel design for continuous flow blood-plasma separation. The design uses the multistage bifurcations and constrictions to separate blood plasma. Simulation results show that the more plasma yield is obtained by reducing the angle of bifurcation, decreasing the constriction width and by increasing the bifurcating stages. The simulation shows that yield obtained after optimizing the geometry is 97.03%.
Keywords
Blood Plasma Microfluidic Microchannels Continuous flow Passive separationReferences
- 1.Vaidyanathan, K., Vasudevan, D.M.: Organ specific tumor markers: what’s new? Indian J. Clin. Biochem. 27(2), 110–120 (2012)CrossRefGoogle Scholar
- 2.Zhang, J., Wei, X., Xue, X., Jiang, Z.: Structural design of microfluidic channels for blood plasma separation. J. Nanosci. Nanotechnol. 14(10), 7419–7426 (2014)CrossRefGoogle Scholar
- 3.Jang, H., Haq, M.R., Ju, J., Kim, Y., Kim, S.M., Lim, J.: Fabrication of all glass bifurcation microfluidic chip for blood plasma separation. Micromachines 8(3), 67 (2017)CrossRefGoogle Scholar
- 4.Liu, C., et al.: Membrane-based, sedimentation-assisted plasma separator for point-of-care applications. Anal. Chem. 85(21), 10463–10470 (2013)CrossRefGoogle Scholar
- 5.Kovarik, M.L., et al.: Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field. Anal. Chem. 85(2), 451–472 (2012)CrossRefGoogle Scholar
- 6.Huh, D., et al.: Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal. Chem. 79(4), 1369–1376 (2007)CrossRefGoogle Scholar
- 7.Jung, Y., Choi, Y., Han, K.H., Frazier, A.B.: Six-stage cascade paramagnetic mode magnetophoretic separation system for human blood samples. Biomed. Microdevices 12(4), 637–645 (2010)CrossRefGoogle Scholar
- 8.Pommer, M.S., et al.: Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels. Electrophoresis 29(6), 1213–1218 (2008)CrossRefGoogle Scholar
- 9.Petersson, F., Åberg, L., Swärd-Nilsson, A.M., Laurell, T.: Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal. Chem. 79(14), 5117–5123 (2007)CrossRefGoogle Scholar
- 10.Nakashima, Y., Hata, S., Yasuda, T.: Blood plasma separation and extraction from a minute amount of blood using dielectrophoretic and capillary forces. Sens. Actuators B Chem. 145(1), 561–569 (2010)CrossRefGoogle Scholar
- 11.Fukuda, S., Schmid-Schönbein, G.W.: Centrifugation attenuates the fluid shear response of circulating leukocytes. J. Leukoc. Biol. 72(1), 133–139 (2002)Google Scholar
- 12.Tripathi, S., Kumar, Y.B., Prabhakar, A., Joshi, S.S., Agrawal, A.: Passive blood plasma separation at the microscale: a review of design principles and microdevices. J. Micromech. Microeng. 25(8), 083001 (2015)CrossRefGoogle Scholar
- 13.Maria, M.S., Chandra, T.S., Sen, A.K.: Capillary flow-driven blood plasma separation and on-chip analyte detection in microfluidic devices. Microfluid. Nanofluidics 21(4), 72 (2017)CrossRefGoogle Scholar
- 14.Lee, K.J., Wu, R.M.: Simulation of resistance of cross-flow microfiltration and force analysis on membrane surface. Desalination 233(1–3), 239–246 (2008)CrossRefGoogle Scholar
- 15.Yeh, C.H., Hung, C.W., Wu, C.H., Lin, Y.C.: Using the developed cross-flow filtration chip for collecting blood plasma under high flow rate condition and applying the immunoglobulin E detection. J. Micromech. Microeng. 24(9), 095013 (2014)CrossRefGoogle Scholar
- 16.Wu, Z., Hjort, K.: Microfluidic hydrodynamic cell separation: a review. Micro Nanosyst. 1(3), 181–192 (2009)CrossRefGoogle Scholar
- 17.Sun, J., et al.: Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels. Biomicrofluidics 7(1), 011802 (2013)CrossRefGoogle Scholar
- 18.Tachi, T., Kaji, N., Tokeshi, M., Baba, Y.: Simultaneous separation, metering, and dilution of plasma from human whole blood in a microfluidic system. Anal. Chem. 81(8), 3194–3198 (2009)CrossRefGoogle Scholar
- 19.Maria, M.S., Rakesh, P.E., Chandra, T.S., Sen, A.K.: Capillary flow-driven microfluidic device with wettability gradient and sedimentation effects for blood plasma separation. Sci. Rep. 7, 43457 (2017)CrossRefGoogle Scholar
- 20.Li, X., Chen, W., Liu, G., Lu, W., Fu, J.: Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes. Lab Chip 14(14), 2565–2575 (2014)CrossRefGoogle Scholar
- 21.Wei Hou, H., Gan, H.Y., Bhagat, A.A., Li, L.D., Lim, C.T., Han, J.: A microfluidics approach towards high-throughput pathogen removal from blood using margination. Biomicrofluidics 6(2), 024115 (2012)CrossRefGoogle Scholar
- 22.Rafeie, M., Zhang, J., Asadnia, M., Li, W., Warkiani, M.E.: Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation. Lab Chip 16(15), 2791–2802 (2016)CrossRefGoogle Scholar
- 23.Pries, A.R., Secomb, T.W.: Microvascular blood viscosity in vivo and the endothelial surface layer. Am. J. Physiol. Heart Circ. Physiol. 289(6), H2657–H2664 (2005)CrossRefGoogle Scholar
- 24.Svanes, K., Zweifach, B.W.: Variations in small blood vessel hematocrits produced in hypothermic rats by micro-occlusion. Microvasc. Res. 1(2), 210–220 (1968)CrossRefGoogle Scholar
Copyright information
© Springer Nature Singapore Pte Ltd. 2019