Advertisement

Temperature Dependence of Electrical Conductivity of Carbon Nanotube Films from 300 to 1100 K

  • Xiaoshan Zhang
  • Haitao LiuEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 216)

Abstract

Carbon nanotube (CNT) films are the most promising high-temperature electronic materials of the future. Studying the conductivity-temperature characteristic of the CNT films is an effective method to understand their nature of conduction. In this work, we present first measurement of the temperature dependence of electrical conductivity of the direct spun CNT film in a wide temperature range, from 300 up to 1100 K. The results indicate that the conductivity of the film increases with increase of the temperature up to the crossover temperature (T*), above which it starts decreasing. We find that the conduction of the CNT film is determined by two components, the individual nanotube resistance (Rtube) and the contact resistance (Rcontact). At the temperature below T*, Rcontact plays a major role in the charge transport. Above T*, both Rtube and Rcontact determine the conduction behavior, due to the electron–phonon scattering in the individual CNT at high temperatures. We propose that the study of conductivity-temperature characteristic of the CNT films provides lots of information for understanding the conduction mechanisms of the films and thus aids to improve their conductivity and applications at high temperatures.

References

  1. 1.
    M. Zhang, S.L. Fang, A.A. Zakhidov, S.B. Lee, A.E. Aliev, C.D. Williams, K.R. Atkinson, R.H. Baughman, Strong, transparent, multifunctional, carbon nanotube sheets. Science 309, 1215–1219 (2005)CrossRefGoogle Scholar
  2. 2.
    Z.C. Zhang, Y.Z. Gu, S.K. Wang, Q.W. Li, M. Li, Z.G. Zhang, Enhanced dielectric and mechanical properties in chlorine-doped continuous CNT sheet reinforced sandwich polyvinylidene fluoride film. Carbon 107, 405–414 (2016)CrossRefGoogle Scholar
  3. 3.
    I.W.P. Chen, R. Liang, H.B. Zhao, B. Wang, C. Zhang, Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking. Nanotechnology 22, 485708 (2011)CrossRefGoogle Scholar
  4. 4.
    J.N. Wang, X.G. Luo, T. Wu, Y. Chen, High-strength carbon nanotube fiber-like ribbon with high ductility and high electrical conductivity. Nat. Commun. 5, 3848 (2014)CrossRefGoogle Scholar
  5. 5.
    L. Dumee, K. Sears, S. Mudie, N. Kirby, C. Skourtis, J. Mcdonnell, S. Lucas, J. Schutz, N. Finn, C. Huynh, S. Hawkins, L. Kong, P. Hodgson, M. Duke, S. Gray, Characterization of carbon nanotube webs and yarns with small angle X-ray scattering: revealing the yarn twist and inter-nanotube interactions and alignment. Carbon 63, 562–566 (2013)CrossRefGoogle Scholar
  6. 6.
    J.T. Di, D.M. Hu, H.Y. Chen, Z.Z. Yong, M.H. Chen, Z.H. Feng, Y.T. Zhu, Q.W. Li, Ultrastrong, Foldable, and highly conductive carbon nanotube film. ACS Nano 6, 5457–5464 (2012)CrossRefGoogle Scholar
  7. 7.
    K. Liu, Y. Sun, X. Lin, R. Zhou, J. Wang, S. Fan, K. Jiang, Scratch-resistant, highly conductive, and high-strength carbon nanotube based composite yarns. ACS Nano 4, 5827–5834 (2010)CrossRefGoogle Scholar
  8. 8.
    Y.A. Kim, H. Muramatsu, T. Hayashi, M. Endo, M. Terrones, M.S. Dresselhaus, Thermal stability and structural changes of double-walled carbon nanotubes by heat treatment. Chem. Phys. Lett. 398, 87–92 (2004)CrossRefGoogle Scholar
  9. 9.
    Z.B. Yang, X.M. Sun, X.L. Chen, Z.Z. Yong, G. Xu, R.X. He, Z.H. An, Q.W. Li, H.S. Peng, Dependence of structures and properties of carbon nanotube fibers on heating treatment. J. Mater. Chem. 21, 13772 (2011)CrossRefGoogle Scholar
  10. 10.
    P. Liu, Y.F. Tan, D. Hu, D. Jewell, M.D. Hai, Multiproperty enhancement of aligned carbon nanotube thin films from floating catalyst method. Mater. Des. 10, 754–760 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Ravi, A.B. Kaiser, C.W. Bumby, Charge transport in surfactant-free single walled carbon nanotube networks. Phys. Status Solidi B 250, 1463–1467 (2013)CrossRefGoogle Scholar
  12. 12.
    A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Carbon nanotube. Topics Appl. Phys. 111, 455–493 (2008)Google Scholar
  13. 13.
    G.M. Zhao, Evidence for room-temperature superconductivity in carbon nanotubes. New Res. Supercond. 1, 23–59 (2002)Google Scholar
  14. 14.
    W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, H. Park, Fabry-Perot interference in a nanotube electron waveguide. Nature 411, 665 (2001)CrossRefGoogle Scholar
  15. 15.
    J. Kong, E. Yenilmez, T.W. Tombler, W. Kim, H.R.B. Laughlin, L. Liu, Quantum interference and ballistic transmission in nanotube electron waveguides. Phys. Rev. Lett. 87, 106801 (2001)CrossRefGoogle Scholar
  16. 16.
    A. Javey, J. Guo, Q. Wang, M. Lundstrom, H.J. Dai, Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003)CrossRefGoogle Scholar
  17. 17.
    Z. Yao, C.L. Kane, C. Dekker, High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000)CrossRefGoogle Scholar
  18. 18.
    D. Mann, Y.K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X.R. Wang, Electrically driven thermal light emission from individual single-walled carbon nanotubes. Nature Nanotechnol. 2, 33–38 (2004)CrossRefGoogle Scholar
  19. 19.
    J.Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4, 517–520 (2004)CrossRefGoogle Scholar
  20. 20.
    A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, High-field quasi ballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92, 106804 (2004)CrossRefGoogle Scholar
  21. 21.
    W.A. Heer, W.S. Bacsa, A. ChAtelain, T. Gerfin, R. Humphrey-Baker, L. Forro, Aligned carbon nanotube films: production and optical and electronic properties. Science 268, 845–846 (1995)CrossRefGoogle Scholar
  22. 22.
    M. Zhang, K.R. Atkinson, R.H. Baughman, Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306, 1358–1361 (2004)CrossRefGoogle Scholar
  23. 23.
    Y.J. Kim, T.S. Shin, H.D. Choi, J.H. Kwon, Y.C. Chung, H.G. Yoon, Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43, 23–30 (2005)CrossRefGoogle Scholar
  24. 24.
    M. Salvato, M. Cirillo, M. Lucci, S. Orlanducci, I. Ottaviani, M.L. Terranova, Charge transport and tunneling in single-walled carbon nanotube bundles. Phys. Rev. Lett. 101, 246804 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Science and Technology on Advanced Ceramic Fibers and Composites LaboratoryCollege of Aerospace Science and Engineering, National University of Defense TechnologyChangshaChina

Personalised recommendations