Advertisement

Enhanced Biocompatibility via Adjusting the Soft-to-Hard Segment Ratios of Poly (Ether-Block-Amide) Medical Hollow Fiber Tube for Invasive Medical Devices

  • Z. M. Li
  • Y. Y. Xue
  • Z. H. Tang
  • S. Zhu
  • M. L. Qin
  • M. H. YuEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 216)

Abstract

Poly(ether-block-amide) (Pebax) is a promising polymeric material for the application in biomedical area, which is significantly influenced by its property of biocompatibility. For segment copolymers like Pebax-family materials, the biocompatibility is closely related to the soft-to-hard segment ratios. This study aims to explore the relationship between the biocompatibility property and soft-to-hard segment ratios of Pebax medical hollow fiber tube for invasive medical devices. Various analytical techniques including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscopy (SEM) and dynamic thermomechanical analysis (DMA) were used to observe the Pebax hollow fiber tube with various soft-to-hard segment ratios. The results indicated that the degree of microphase separation increased with the decrease of the soft segment ratios of Pebax hollow fiber tube. Similarly, we have clearly observed the effect of soft-to-hard segment ratios in the wettability of Pebax films with the contact angle method. The biocompatibility of Pebax hollow fiber tube was characterized by hemolysis tests and vitro cytotoxicity tests. It was found that the biocompatibility was greatly influenced by the content of soft segment ratios. The satisfactory biocompatibility property can be achieved via reducing the soft segment ratios of Pebax hollow fiber tube.

Notes

Acknowledgements

This work was financially supported by the National Basic Research Program (2011 CB606101) of the China 973 Program, National Natural Science Foundation of China (No. 21404023), funding from State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University (No. LK1515).

References

  1. 1.
    M.C. Choi, J.Y. Jung, H.S. Yeom, Y.W. Chang, Polym. Eng. Sci. 53, 982 (2013)CrossRefGoogle Scholar
  2. 2.
    M.R. Barzegari, N. Hossieny, D. Jahani, C.B. Park, Polymer 114, 15 (2017)CrossRefGoogle Scholar
  3. 3.
    J.P. Sheth, J. Xu, G.L. Wilkes, Polymer 46, 743 (2003)CrossRefGoogle Scholar
  4. 4.
    X.J. Guo, J. Polym. Sci. Part B. Polym. Phys. 46, 2035 (2008)Google Scholar
  5. 5.
    E.V. Konyukhova, A.I. Buzin, Y.K. Godovsky, Thermo. Acta. 391, 271 (2002)CrossRefGoogle Scholar
  6. 6.
    P. Rangarajan, R.A. Register, D.H. Adamson, L.J. Fetters, W. Bars, S. Naylor, A.J. Ryan, Macromolecules 28, 1422 (1995)CrossRefGoogle Scholar
  7. 7.
    Y. Song, H. Yamamoto, N. Nemoto, Macromolecules 37, 6219 (2004)CrossRefGoogle Scholar
  8. 8.
    C.X. Wang, M. Du, J.C. Lv, Q.Q. Zhou, Y. Ren, G.L. Liu, D.W. Gao, L.M. Jin, Appl. Surf. Sci. 349, 333 (2015). B. Tavernier, J. Mewis, P.V. Puyvelde, M. Takenaka, B. Ernst, T. Hashimoto, Polym. Eng. Sci. 48, 2418 (2008)Google Scholar
  9. 9.
    D.A. Mair, E. Geiger, A.P. Pisano, J.M. Frechet, F. Svec, Lab Chip 6, 1346 (2006)CrossRefGoogle Scholar
  10. 10.
    N. Zhang, S.Y. Choi, M.D. Gilchrist, Mater. Eng. 299, 1362 (2015)Google Scholar
  11. 11.
    Pebax Polyether Block Amides: Product Properties, http://www.Pebax.com. Accessed 16 May 2013
  12. 12.
    S.J. McCarthy, G.F. Meijs, N. Mitchell, P.A. Gunatillake, G. Heath, A. Brandwood, K. Schindhelm, Biomaterials 18, 1387 (1997)CrossRefGoogle Scholar
  13. 13.
    D.J. Upadhyay, N.Y. Cui, C.A. Anderson, N.A. Brown, Colloids Surf. A Physicochem. Eng. Asp. 248, 47 (2004)CrossRefGoogle Scholar
  14. 14.
    T.G. Grasel, J.A. Pierce, S.L. Cooper, J. Biomed. Mater. Res. 21, 815 (1987)CrossRefGoogle Scholar
  15. 15.
    Y. Arima, H. Lwata, Biomaterials 28, 2007 (2007)CrossRefGoogle Scholar
  16. 16.
    T. M. Chapman, J. Polym. Sci. Part A: Polym. Chem. 27, 1993 (1989)Google Scholar
  17. 17.
    A. Takahara, J. Tashita, T. Kajiyama, M. Takayanagi, Polymer 26, 987 (1985)CrossRefGoogle Scholar
  18. 18.
    K.G. Tingey, J.D. Andrade, Langmuir 7, 2471 (1991)CrossRefGoogle Scholar
  19. 19.
    T. Fujiwara, K.J. Wynne, Macromolecules 37, 8491 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Z. M. Li
    • 1
    • 2
  • Y. Y. Xue
    • 3
  • Z. H. Tang
    • 3
  • S. Zhu
    • 1
  • M. L. Qin
    • 1
    • 2
  • M. H. Yu
    • 1
    Email author
  1. 1.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghaiPeople’s Republic of China
  2. 2.AccuPath Medical (Jiaxing) Co. Ltd.ShanghaiChina
  3. 3.School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina

Personalised recommendations