Advertisement

A Study on the Radial Difference of PLA Monofilament

  • Jian Lu
  • Yuewei Liu
  • Zexu Hu
  • Hengxue Xiang
  • Zhe Zhou
  • Bin Sun
  • Qilin Wu
  • Meifang ZhuEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 216)

Abstract

PLA monofilament has great potential for resorbable applications. In this paper, a series of PLA monofilaments with different drawing temperature and drawing ratio were prepared through melt spinning. The crystallization and radial difference of the cross section were carefully studied by DSC and Raman spectra, respectively. The results showed that the crystallinity increased with the increasing cooling time in the cooling process and increased with the decreasing drawing temperature or the increasing drawing ratio in the drawing process. The crystallinity of the core was higher than that of the surface. The molecular orientation of the core decreased with the increasing cooling time and increased with the increasing drawing temperature and the decreasing draw ratio, while there’s no significant tendency for the molecular orientation of the surface.

References

  1. 1.
    R.K. Kulkarni, K.C. Pani, C. Neuman, F. Leonard, Polylactic acid for surgical implants. Arch. Surg. 93, 839–843 (1966)CrossRefGoogle Scholar
  2. 2.
    N. Ashammakhi, P. Rokkanen, Absorbable polyglycolide devices in trauma and bone surgery. Biomaterials 18, 3–9 (1997)CrossRefGoogle Scholar
  3. 3.
    I. Bisson, M. Kosinski, S. Ruault, B. Gupta, J. Hilborn, F. Wurm, P. Frey, Acrylic acid grafting and collagen immobilization on poly (ethylene terephthalate) surfaces for adherence and growth of human bladder smooth muscle cells. Biomaterials 23, 3149–3158 (2002)CrossRefGoogle Scholar
  4. 4.
    Y. Wang, X. Zhang, Vascular restoration therapy and bioresorbable vascular scaffold. Regenerative Biomater. 1(1), 49–55 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Onuma, P.W. Serruys, Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization. Circulation 123(7), 79–97 (2011)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, L. Kleiner, Fabricating an implantable medical device from an amorphous or very low crystallinity polymer construct. US: 8372332 (2013)Google Scholar
  7. 7.
    Y. Wang, Bioabsorbable stent with layers having different degradation rates. US: 8057876 (2011)Google Scholar
  8. 8.
    Y. Wang, D. Gale, B. Huang, Implantable medical devices fabricated from polymer blends with star-block copolymers. US: 8262723 (2012)Google Scholar
  9. 9.
    Y. Wang, D. Castrol, S. Pacetti, Methods to improve adhesion of polymer coatings over stents. US: 7998524 (2011)Google Scholar
  10. 10.
    W. Channuan, J. Siripitayananon, R. Molloy, G.R. Mitchell, Defining the physical structure and properties in novel monofilaments with potential for use as absorbable surgical sutures based on a lactide containing block terpolymer. Polymer 49(20), 4433–4445 (2008)CrossRefGoogle Scholar
  11. 11.
    S.H. Im, C.Y. Kim, Y. Jung, Y. Jang, S.H. Kim, Biodegradable vascular stents with high tensile and compressive strength: a novel strategy for applying monofilaments via solid-state drawing and shaped-annealing processes. Biomater. Sci. 5(3), 422–431 (2017)CrossRefGoogle Scholar
  12. 12.
    C. Wang, P. Zhang, X. Jiang, Design and characterization of PLLA stents with Z-structure. Text. Res. J. 86(16), 1701–1709 (2016)CrossRefGoogle Scholar
  13. 13.
    E. Tenekecioglu, P.W. Serruys, Y. Onuma, R. Costa, D. Chamie, Y. Sotomi, T.B. Yu, A. Abizaid, H.B. Liew, T. Santoso, Randomized comparison of absorb bioresorbable vascular scaffold and mirage microfiber sirolimus-eluting scaffold using multimodality imaging. Jacc-Cardiovasc. Interv. 10(11), 1115–1130 (2017)CrossRefGoogle Scholar
  14. 14.
    R. Yuval, H.Z. Moran, J.D. Abraham, N. Abraham, Biocompatibility and safety of PLA and its copolymers. Adv. Drug Deliv. Rev. 107, 153–162 (2016)CrossRefGoogle Scholar
  15. 15.
    B. Gupta, N. Revagade, J. Hilborn, Poly (lactic acid) fiber: an overview. Prog. Polym. Sci. 32(4), 455–482 (2007)CrossRefGoogle Scholar
  16. 16.
    R.S. David, Structure formation in polymeric fibers (Hanser Publishers, Cincinnati, 2000)Google Scholar
  17. 17.
    H. Ma, Study on the formation machanism and the structure and properties of large-diameter polymer monofilaments. Donghua University (2011)Google Scholar
  18. 18.
    B. Na, N. Tian, R. Lv, S. Zou, W. Xu, Q. Fu, Annealing-induced oriented crystallization and its influence on the mechanical responses in the melt-spun monofilament of Poly(l-lactide). Macromolecules 43(2), 1156–1158 (2010)CrossRefGoogle Scholar
  19. 19.
    S. Ruengdechawiwat, J. Siripitayananon, R. Molloy, R. Somsunan, P.D. Topham, B.J. Tighe, Preparation of a poly(L-lactide-co-caprolactone) copolymer using a novel tin(II) alkoxide initiator and its fiber processing for potential use as an absorbable monofilament surgical suture. International Journal of Polymeric Materials and Polymeric Biomaterials 65(6), 277–284 (2016)CrossRefGoogle Scholar
  20. 20.
    T.H. Oh, Numerical simulation of temperature distribution in melt spinning of PET monofilament. J. Appl. Polym. Sci. 102(2), 1045–1051 (2006)CrossRefGoogle Scholar
  21. 21.
    J. Zhang, H. Ma, H. Zhang, The study on the morphology of large-diameter PLA as-spun monofilaments. Sci. Technol. Inf. 36, 211 (2013)Google Scholar
  22. 22.
    W.H. Kohler, P. Shrikhande, A.J. McHugh, Modeling Melt Spinning of PLA Fibers. J. Macromolec. Sci. Part B 44(2), 185–202 (2005)CrossRefGoogle Scholar
  23. 23.
    P.J. Wang, N. Ferralis, C. Conway, J.C. Grossman, E.R. Edelman, Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds. Proc. Natl. Acad. Sci. U.S.A. 115(11), 2640–2645 (2018)CrossRefGoogle Scholar
  24. 24.
    G. Kister, G. Cassanas, M. Vert, B. Pauvert, A. Térol, Vibrational analysis of poly (L-lactic acid). J Raman Spectrosc. 26, 307–311 (1995)CrossRefGoogle Scholar
  25. 25.
    P. Taddei, A. Tinti, G. Fini, Vibrational spectroscopy of polymeric biomaterials. J. Raman Spectrosc. 32, 619–629 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jian Lu
    • 1
  • Yuewei Liu
    • 1
  • Zexu Hu
    • 1
  • Hengxue Xiang
    • 1
  • Zhe Zhou
    • 1
  • Bin Sun
    • 1
  • Qilin Wu
    • 1
  • Meifang Zhu
    • 1
    Email author
  1. 1.State Key Lab for Modification of Chemical Fibers and Polymer MaterialCollege of Materials Science and Engineering, Donghua UniversityShanghaiChina

Personalised recommendations