Influence of Minor Grain Boundary Elements on the Solidification Behavior of a Re-containing Single-Crystal Superalloy

  • Jian ZhangEmail author
  • Jingxuan Zhao
  • Xiaotie Zhang
  • Yan Yang
  • Hao Chen
  • Hua Jiang
  • Li She
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 217)


The re-containing single-crystal superalloys with different hafnium and boron additions were fabricated, and their microstructures and segregation behavior were investigated. The results indicated that the addition of hafnium and boron increase the volume fraction of γ/γ′ eutectic, and decrease the volume fraction of micropore. The solidification segregation ratio of Re, W, Mo, Al, and Ta obviously varied with hafnium and boron modified alloy. In addition, individual or simultaneous hafnium and boron additions obviously decrease the liquidus and solidus temperature as well as the incipient melting point.


Hafnium Boron Re-containing superalloy Microstructure Segregation 


  1. 1.
    B.B. Seth, Superalloys 2000 (Minerals, Metals and Materials Society/AIME, USA, 2000), pp. 3–16Google Scholar
  2. 2.
    D.M. Shah, A. Cetel, Superalloys 2000, Champion, PA (2000), pp. 295–300Google Scholar
  3. 3.
    Y.S. Zhao, C.G. Liu, Y.Y. Guo, Y.F. Guo, Prog. Nat. Sci. Mater. Int. 28, 483–488 (2018)CrossRefGoogle Scholar
  4. 4.
    Q.Z. Chen, N. Jones, D.M. Knowles, Acta Mater. 50, 1095–1112 (2002)CrossRefGoogle Scholar
  5. 5.
    K. Al-Jarba, G. Fuchs, JOM 56, 50–55 (2004)CrossRefGoogle Scholar
  6. 6.
    L.R. Liu, T. Jin, N. Zhao, Z. Wang, X. Sun, H. Guan, Z. Hu, Mater. Lett. 58, 2290–2294 (2004)CrossRefGoogle Scholar
  7. 7.
    L.R. Liu, T. Jin, N.R. Zhao, Z.H. Wang, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Sci. Eng., A 385, 105–112 (2004)CrossRefGoogle Scholar
  8. 8.
    S. Tin, T. Pollock, W. Murphy, Metall. Mater. Trans. A. 32, 1743–1753 (2001)CrossRefGoogle Scholar
  9. 9.
    E. Scheil, Metallforschun 2, 7 (1947)Google Scholar
  10. 10.
    L.Y. Sheng, F. Yang, J.T. Guo, X.I. Ting-Fei, Trans. Nonferr. Metals Soc. China 24, 673–681 (2014)CrossRefGoogle Scholar
  11. 11.
    L.G. Fritzemeier, Superalloys 1988, 265–274 (1988)Google Scholar
  12. 12.
    A.A. Hopgood, J.W. Martin, Mater. Sci. Eng. 82, 27–36 (1986)CrossRefGoogle Scholar
  13. 13.
    K. Antony, J. Radavich, in Proceedings of the Third International Symposium (Claitor’s Publishing, 1976Google Scholar
  14. 14.
    P. Zhou, J. Yu, X. Sun, H. Guan, Z. Hu, Mater. Sci. Eng. A 491, 159–163 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Tin, T.M. Pollock, Mater. Sci. Eng. A 348, 111–121 (2003)CrossRefGoogle Scholar
  16. 16.
    W.S. Walston, J.C. Schaeffer, W.H. Murphy, in Superalloys 1996, Minerals, ed. by R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, D.A. Woodford (Metals Mater. Soc., Warrendale, 1996), pp. 9–18Google Scholar
  17. 17.
    R.M. Kearsey, J.C. Beddoes, K.M. Jaansalu, W.T. Thompson, P. Au, in K.A. Green, T.M.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jian Zhang
    • 1
    Email author
  • Jingxuan Zhao
    • 1
  • Xiaotie Zhang
    • 1
  • Yan Yang
    • 1
  • Hao Chen
    • 1
  • Hua Jiang
    • 1
  • Li She
    • 1
  1. 1.Science and Technology on Advanced High Temperature Structural Materials LaboratoryBeijing Institute of Aeronautical MaterialsBeijingChina

Personalised recommendations