Advertisement

Microstructure and Mechanical Properties of 6005A-T5 Aluminum Alloy Welded Joints by Friction Stir Welding and Metal Inert Gas Welding

  • Jingxuan Liu
  • Jian ShenEmail author
  • Xiwu Li
  • Lizhen Yan
  • Hongwei Yan
  • Hongwei Liu
  • Zhihui Li
  • Yong’an Zhang
  • Baiqing Xiong
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 217)

Abstract

The 6005A-T5 aluminum alloy welded joints were prepared by use of friction stir welding (FSW) and metal inert gas welding (MIG). The difference in microstructure and mechanical properties of the two types of welded joints were investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscope (TEM), Vickers hardness, and tensile tests. The results showed that both two methods could be used to weld this alloy successfully. The nugget zone (NZ) of FSW joint experienced a mass of heat input, hence the fine equiaxed grains appeared and the β″ phases dissolved completely. The grown and elongated grains have been preserved in the thermo-mechanically affected zone (TMAZ). The grains in heat-affected zone (HAZ) grew significantly. The microstructure in weld metal of MIG joint shows an evident feature of dendrites. The fusion zone (FZ) is composed of large columnar crystals formed along the direction of heat dissipation. The upgrowth of grains in the HAZ region was more significant than that of FSW. Both the HAZ of the FSW and MIG joints consist of β′ phase and Q′ phase. The minimum hardness of FSW joints is located in the HAZ region, while that of MIG joints is located in the weld zone. The tensile strengths of the FSW and MIG joints reach 80.3 and 72.8% of the BM, respectively. Both of FSW and MIG joints show the ductile fracture.

Keywords

6005A-T5 FSW MIG Microstructure Mechanical properties 

Notes

Acknowledgements

The authors are grateful to the National Key R&D Program of China (2016YFB0300905, 2016YFB0300902) for the financial support.

References

  1. 1.
    J.C. Williams, E.A. Starke Jr., Progress in structural materials for aerospace systems. Acta Mater. 51(19), 5775 (2003)Google Scholar
  2. 2.
    G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, The precipitation sequence in Al–Mg–Si alloys. Acta Mater. 46, 3893 (1998)Google Scholar
  3. 3.
    S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, P.J. Uggowitzer, Mechanisms controlling the artificial aging of Al–Mg–Si alloys. Acta Mater. 59(9), 3352 (2011)Google Scholar
  4. 4.
    P. Dong, D. Sun, H. Li, Natural aging behaviour of friction stir welded 6005A-T6 aluminium alloy. Mater. Sci. Eng., A 576(9), 29 (2013)Google Scholar
  5. 5.
    W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng., A 280(1), 37 (2000)Google Scholar
  6. 6.
    Z. Yan, X. Liu, H. Fang, Mechanical properties of friction stir welding and metal inert gas welding of Al–Zn aluminum alloy joints. Int. J. Adv. Manuf. Technol. 91(9–12) (2017)Google Scholar
  7. 7.
    C.L.M.D. Silva, A. Scotti, The influence of double pulse on porosity formation in aluminum GMAW. J. Mater. Process. Technol. 171(3), 366 (2006)Google Scholar
  8. 8.
    G. Gou, M. Zhang, H. Chen et al., Effect of humidity on porosity, microstructure, and fatigue strength of A7N01S-T5 aluminum alloy welded joints in high-speed trains. Mater. Des. 85, 309 (2015)Google Scholar
  9. 9.
    H. Liu, Y. Zhao, Y. Hu et al., Microstructural characteristics and mechanical properties of friction stir lap welding joint of Alclad 7B04-T74 aluminum alloy. Int. J. Adv. Manuf. Technol. 78(9–12), 1415 (2015)Google Scholar
  10. 10.
    X. Wang, S. Mao, P. Chen et al., Evolution of microstructure and mechanical properties of a dissimilar aluminium alloy weldment. Mater. Des. 90, 230 (2016)Google Scholar
  11. 11.
    L.P. Borrego, J.D. Costa, J.S. Jesus et al., Fatigue life improvement by friction stir processing of 5083 aluminium alloy MIG butt welds. Theor. Appl. Fract. Mech. 70, 68 (2014)Google Scholar
  12. 12.
    W.M. Thomas, E.D. Nicholas, J.C. Needham et al., Friction welding. U.S. Patent 5,460,317, 24 Oct 1995Google Scholar
  13. 13.
    P. Dong, H. Li, D. Sun et al., Effects of welding speed on the microstructure and hardness in friction stir welding joints of 6005A-T6 aluminum alloy. Mater. Des. 45, 524 (2013)Google Scholar
  14. 14.
    R.S. Mishra, Z.Y. Ma, Friction stir welding and processing. Mater. Sci. Eng., A 50(1), 1 (2005)Google Scholar
  15. 15.
    R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia, Recent advances in friction-stir welding—process, weldment structure and properties. Prog. Mater. Sci. 53(6), 980 (2008)Google Scholar
  16. 16.
    A.R. Yazdipour, A. Shafiei, H.J. Aval, An investigation of the microstructures and properties of metal inert gas and friction stir welds in aluminum alloy 5083. Sadhana 36(4), 505 (2011)Google Scholar
  17. 17.
    P. Moreira, M.A.V. De Figueiredo, P. De Castro, Fatigue behaviour of FSW and MIG weldments for two aluminium alloys. Theor. Appl. Fract. Mech. 48(2), 169 (2007)Google Scholar
  18. 18.
    S. Maggiolino, C. Schmid, Corrosion resistance in FSW and in MIG welding techniques of AA6XXX. J. Mater. Process. Technol. 197(1–3), 237 (2008)Google Scholar
  19. 19.
    T. Tagawa, K. Tahara, E. Abe et al., Fatigue properties of cast aluminium joints by FSW and MIG welding. Weld. Int. 28(1), 21 (2014)Google Scholar
  20. 20.
    V. Crupi, A. Marinò, M. Biot et al., Fatigue prediction by thermographic method of aluminum alloy 6082 panels: comparison between FSW and MIG welding. J. Ship Prod. Des. 23(4), 215 (2007)Google Scholar
  21. 21.
    C. Sharma, D.K. Dwivedi, P. Kumar, Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of AA7039 aluminum alloy. Mater. Des. 36(1), 379 (2012)Google Scholar
  22. 22.
    Z. Zhang, B.L. Xiao, Z.Y. Ma, Effect of segregation of secondary phase particles and “S” line on tensile fracture behavior of friction stir-welded 2024Al-T351 joints. Metall. Mater. Trans. A 44(9), 4081 (2013)Google Scholar
  23. 23.
    Y.S. Sato, H. Takauchi, S.H.C. Park et al., Characteristics of the kissing-bond in friction stir welded Al alloy 1050. Mater. Sci. Eng., A 405(1), 333 (2005)Google Scholar
  24. 24.
    S. Di, X. Yang, D. Fang et al., The influence of zigzag-curve defect on the fatigue properties of friction stir welds in 7075-T6 Al alloy. Mater. Chem. Phys. 104(2), 244 (2007)Google Scholar
  25. 25.
    S.J. Andersen, H.W. Zandbergen, J. Jansen et al., The crystal structure of the β″ phase in Al–Mg–Si alloys. Acta Mater. 46(2), 3283 (2007)Google Scholar
  26. 26.
    W. Yang, M. Wang, Y. Jia et al., Studies of orientations of β″ precipitates in Al–Mg–Si–(Cu) alloys by electron diffraction and transition matrix analysis. Metall. Mater. Trans. A 42(9), 2917 (2011)Google Scholar
  27. 27.
    R. Vissers, M.A.V. Huis, J. Jansen et al., The crystal structure of the β′ phase in Al–Mg–Si alloys. Acta Mater. 55(11), 3815 (2007)Google Scholar
  28. 28.
    M. Torsæter, W. Lefebvre, C.D. Marioara et al., Study of intergrown L and Q′ precipitates in Al–Mg–Si–Cu alloys. Scripta Mater. 64(9), 817 (2011)Google Scholar
  29. 29.
    R.K.W. Marceau, A. de Vaucorbeil, G. Sha, S.P. Ringer, W.J. Poole, Analysis of strengthening in AA6111 during the early stages of aging: atom probe tomography and yield stress modelling. Acta Mater. 61(19), 7285 (2013)Google Scholar
  30. 30.
    M.J. Starink, L.F. Cao, P.A. Rometsch, A model for the thermodynamics of and strengthening due to co-clusters in Al–Mg–Si-based alloys. Acta Mater. 60(10), 4194 (2012)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jingxuan Liu
    • 1
  • Jian Shen
    • 1
    Email author
  • Xiwu Li
    • 1
  • Lizhen Yan
    • 1
  • Hongwei Yan
    • 1
  • Hongwei Liu
    • 1
  • Zhihui Li
    • 1
  • Yong’an Zhang
    • 1
  • Baiqing Xiong
    • 1
  1. 1.State Key Laboratory of Nonferrous Metals and ProcessesGRINM Group Co., LtdBeijingChina

Personalised recommendations