Advertisement

Effect of Pre-aging Technology on Microstructure and Mechanical Properties of 6111 Aluminum Alloy

  • Hongwei Liu
  • Shuhui HuangEmail author
  • Baiqing Xiong
  • Yong’an Zhang
  • Zhihui Li
  • Xiwu Li
  • Hongwei Yan
  • Lizhen Yan
  • Kai Wen
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 217)

Abstract

6xxx series aluminum alloy is one of the ideal automotive lighting materials for its high strength, excellent formability, good corrosion resistance, and weldability. In this paper, the effect of pre-aging technology on microstructure and properties of 6111 aluminum alloy was investigated by using TEM, tensile, and Erichsen test. The results showed that better properties of 6111 alloy could be obtained through 140 °C/10 min pre-aging treatment within 30 min after solution treatment (named T4P treatment). The n, r, IE, and yield strength values of 6111-T4 alloy were 0.31, 0.62, 8.06 mm, and 149 MPa, respectively, while those of 6111-T4P alloy were 0.33, 0.76, 8.45 mm, and 133 MPa, respectively. After simulated paint baking at 170 °C/30 min, the yield strength of 6111-T4 and 6111-T4P alloys increased to 154 and 212 MPa, respectively. Compared with T4 treatment, the pre-aging treatment reduced precipitating temperature of β″ phase and promoted precipitation during simulated paint baking. Pre-aging treatment benefits press forming of automotive body sheet and enables strengthening of the materials after simulated paint baking.

Keywords

6111 aluminum alloy Automotive body sheet Pre-aging technology Mircostructure and properties 

References

  1. 1.
    M.A. van Huis, J.H. Chen, M.H.F. Sluiter, H.W. Zandbergen, Phase stability and structural features of matrix-embedded hardening precipitates in Al-Mg-Si alloys in the early stages of evolution. Acta Mater. 55, 2183–2199 (2007)CrossRefGoogle Scholar
  2. 2.
    S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, P.J. Uggowitzer, Mechanisms controlling the artificial aging of Al-Mg-Si alloys. Acta Mater. 59, 3352–3363 (2011)CrossRefGoogle Scholar
  3. 3.
    C.S. Tsao, C.Y. Chen, U.S. Jeng, T.Y. Kuo, Precipitation kinectics and transformation of metastable phases in Al-Mg-Si alloys. Acta Mater. 54, 4621–4631 (2006)CrossRefGoogle Scholar
  4. 4.
    W.C. Yang, L.P. Huang, R.R. Zhang, M.P. Wang, Z. Li, Y.L. Jia, R.S. Lei, X.F. Sheng, Electron microscopy studies of the age-hardening behaviors in 6005A alloys and microstructural characterizations of precipitstes. J. Alloys Compd. 514, 220–233 (2012)CrossRefGoogle Scholar
  5. 5.
    G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, The precipitation sequence in Al-Mg-Si alloys. Acta Mater. 46, 3893–3904 (1998)CrossRefGoogle Scholar
  6. 6.
    W.F. Miao, D.E. Laughlin, Effects of Cu content and preaging on precipitation characteristics in aluminum alloy 6022. Metall. Mater. Trans. A 31, 361–371 (2000)CrossRefGoogle Scholar
  7. 7.
    R. Prillhofer, G. Rank, J. Berneder, H. Antrekowitsch, P.J. Uggowitzer, S. Pogatscher, Property criteria for automotive Al-Mg-Si sheet alloys. Materials 7(7), 5047–5068 (2014)CrossRefGoogle Scholar
  8. 8.
    L. Zhen, S.B. Kang, The effect of pre-aging on microstructure and tensile properties of Al-Mg-Si alloys. Scr. Mater 36, 1089–1094 (1997)CrossRefGoogle Scholar
  9. 9.
    M. Torsæter, H.S. Hasting, W. Lefebvre, C.D. Marioara, J.C. Walmsley, S.J. Andersen, R. Holmestad, The influence of composition and natural aging on clustering during preaging in Al-Mg-Si alloys. J. Appl. Phy. 108, 0735527 (2010)CrossRefGoogle Scholar
  10. 10.
    Y. Aruga, M. Kozuka, Y. Takaki, T. Sato, Evaluation of solute clusters associated with bake-hardening response in isothermal aged Al-Mg-Si alloys using a three-dimensional atom probe. Metall. Mater. Trans. A 45, 5906–5913 (2014)CrossRefGoogle Scholar
  11. 11.
    Serizawa, S. Hirosawa, T. Sato, Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al-Mg-Si alloy. Metall. Mater. Trans. A 39, 243–251 (2008)CrossRefGoogle Scholar
  12. 12.
    L. Zhen, S.B. Kang, DSC analyses of the precipitation behavior of two Al-Mg-Si alloys naturally aged for different times. Mater. Lett. 37, 349–353 (1998)CrossRefGoogle Scholar
  13. 13.
    L.P. Ding, Y. He, Z. Wen, P.Z. Zhao, Z.H. Jia, Q. Liu, Optimization of the pre-aging treatment for an AA6022 alloy at various temperatures and holding times. J. Alloys Compd. 647, 238–244 (2015)CrossRefGoogle Scholar
  14. 14.
    V.N. Grau, A. Cuniberti, A. Tolley, V.C. Riglos, M. Stipcich, Solute clustering behavior between 293 K and 373 K in a 6082 aluminum alloy. J. Alloys Compd. 684, 481–487 (2016)CrossRefGoogle Scholar
  15. 15.
    R.K.W. Marceau, A. de Vaucorbeil, G. Sha, S.P. Ringer, W.J. Poole, Atom probe tomography and yield stress modelling. Acta Mater. 61, 7285–7303 (2013)CrossRefGoogle Scholar
  16. 16.
    M.J. Starink, L.F. Cao, P.A. Rometsch, A model for the thermodynamics of and strengthening due to co-clusters in Al-Mg-Si-based alloy. Acta Mater. 60, 4194–4207 (2012)CrossRefGoogle Scholar
  17. 17.
    F.A. Martinsen, F.J.H. Ehlers, M. Torsæter, R. Homestad, Reversal of the negative natural aging effect in Al-Mg-Si alloys. Acta Mater. 60, 6091–6101 (2012)CrossRefGoogle Scholar
  18. 18.
    H. Li, W. Liu, Nanoprecipitates and their strengthening behavior in Al-Mg-Si alloy during the aging process. Metall. Materi. Trans A 48, 1990–1998 (2017)CrossRefGoogle Scholar
  19. 19.
    S. Esmaeili, X. Wang, D.J. Lloyd, W.J. Poole, On the precipitation hardening behavior of the Al-Mg-Si-Cu alloy AA6111. Metall. Mater. Trans. A 34, 751–763 (2003)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Hongwei Liu
    • 1
  • Shuhui Huang
    • 1
    Email author
  • Baiqing Xiong
    • 1
  • Yong’an Zhang
    • 1
  • Zhihui Li
    • 1
  • Xiwu Li
    • 1
  • Hongwei Yan
    • 1
  • Lizhen Yan
    • 1
  • Kai Wen
    • 1
  1. 1.State Key Laboratory of Nonferrous Metals and ProcessesGRIMAT Engineering Institute Co., Ltd.BeijingChina

Personalised recommendations