Advertisement

Preparation and Compressive Properties of Advanced Pore Morphology (APM) Foam Elements

  • Yanli WangEmail author
  • Lucai Wang
  • Hong Xu
  • Qiaoyu Guo
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 217)

Abstract

The Advanced Pore Morphology (APM) foam elements were prepared by modified Powder-Compacting Foaming (PCF) method. APM aluminum foam elements have a nearly-spherical surface with closed-cell porous structure and integral skin, with an average diameter of about 15 mm. Their average pore size is 1.879 mm and average equivalent circle circularity is 0.8. Two factors (heating speed and foaming time) played important roles in the preparation of APM foamed aluminum. The deformation of APM foam element exhibits plastic feature under quasi-static compression tests, the elastic region of APM foam aluminum elements is short, and the plastic deformation is not homogeneous.

Keywords

Metal foams Aluminum foam Advanced pore morphology (APM) Compression performance 

References

  1. 1.
    M. Vesenjak, Z. Ren, Geometrical and mechanical analysis of various types of cellular metals. Ciênc. Tecnol. dos Mater. 28, 9–13 (2016)CrossRefGoogle Scholar
  2. 2.
    J. Banhart, Manufacture, characterization and application of cellular metals and metal foams. Prog. Mater. Sci. 46, 559–632 (2001)CrossRefGoogle Scholar
  3. 3.
    Moon Sik Han, Jae Ung Cho, Impact damage behavior of sandwich composite with aluminum foam core. Trans. Nonferrous Met. Soc. Chin. 24, 42–46 (2014)CrossRefGoogle Scholar
  4. 4.
    J. Baumeister, J. Weise, Applications of aluminum hybrid foam sandwiches in battery housings for electric vehicles. Proc. Mater. Sci. 4, 317–321 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Ulbin, M. Borovinšek, Y. Higa, K. Shimojima, Internal structure characterization of AlSi7 and AlSi10 advanced pore morphology (APM) foam elements. Mater. Lett. 136, 416–419 (2014)CrossRefGoogle Scholar
  6. 6.
    A. Kovačič, Z. Ren, On the porosity of advanced pore morphology structures. Compos. Struct. 158, 235–244 (2016)CrossRefGoogle Scholar
  7. 7.
    Luo Xin, The mechanical behavior of thin-walled tube filled with hollow metal spheres. Compos. Struct. 133, 124–130 (2015)CrossRefGoogle Scholar
  8. 8.
    O. Friedl, C. Motz, H. Peterlik, S. Puchegger, N. Reger, R. Pippan, Experimental investigation of mechanical properties of metallic hollow sphere structures. Metall. Mater. Trans. B 39(1), 135–146 (2008)CrossRefGoogle Scholar
  9. 9.
    K. Stöbener, J. Baumeister, G. Rausch, M. Rausch, Forming metal foams by simpler methods for cheaper solutions. Met. Powder Rep. 60(1), 12–16 (2005)CrossRefGoogle Scholar
  10. 10.
    K. Stöbener, J. Baumeister, G. Rausch, M. Busse, Metal foams with advanced pore morphology (APM). High Temp. Mater. Processes (London) 26(4), 231–238 (2007)CrossRefGoogle Scholar
  11. 11.
    K. Stöbener, D. Lehmhus, M. Avalle, L. Peroni, M. Busse, Aluminum foam-polymer hybrid structures (APM aluminum foam) in compression testing. Int. J. Solids Struct. 45, 5627–5641 (2008)CrossRefGoogle Scholar
  12. 12.
    K. Stöbener, G. Rausch, Aluminium foam-polymer composites: processing and characteristics. J. Mater. Sci. 44, 1506–1511 (2009)CrossRefGoogle Scholar
  13. 13.
    I. Duarte, M. Vesenjak, Compressive performance evaluation of APM (Advanced pore morphology) foam filled tubes. Compos. Struct. 134, 409–420 (2015)CrossRefGoogle Scholar
  14. 14.
    J. Hohe, V. Hardenacke, V. Fascio, Y. Girard, J. Baumeister, Numerical and experimental design of graded cellular sandwich cores for multifunctional aerospace applications. Mater. Des. 39, 20–32 (2012)CrossRefGoogle Scholar
  15. 15.
    D. Lehmhus, J. Baumeister, L. Stutz, E. Schneider, K. Stöbener, M. Avalle, Mechanical characterisation of particulate aluminum foams—strain-rate, density and matrix alloy versus adhesive effects. Adv. Eng. Mater. 12, 596–603 (2010)CrossRefGoogle Scholar
  16. 16.
    M. Vesenjak, M. Borovinšek, T. Fiedler, Y. Higa, Z. Ren, Structural characterisation of advanced pore morphology (APM) foam elements. Mater. Lett. 110, 201–203 (2013)CrossRefGoogle Scholar
  17. 17.
    M. Vesenjak, F. Gacnik, L. Krstulovicopara, Mechanical properties of advanced pore morphology foam elements. Mech. Adv. Mater. Struct. 22(5), 359–366 (2015)CrossRefGoogle Scholar
  18. 18.
    M.A. Sulong, M. Vesenjak, I.V. Belova, G.E. Murch, T. Fiedler, Compressive properties of advanced pore morphology (APM) foam elements. Mater. Sci. Eng., A 607, 498–504 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.North University of ChinaTaiyuanChina
  2. 2.Taiyuan University of Science and TechnologyTaiyuanChina

Personalised recommendations