A Novel ZOR-Inspired Patch Antenna for Vehicle Mounting Application

  • Chetan BardeEmail author
  • Arvind Choubey
  • Rashmi Sinha
  • Santosh Kumar Mahto
  • Prakash Ranjan
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 904)


In this paper, a novel structure of hexagonal microstrip patch antennas is proposed which is based on the concept of zeroth-order resonator (ZOR). The simulated result shows that the proposed antenna achieves return loss of \(-19.23\) dB and has bandwidth of 0.453 GHz centered at 6.92 GHz. It achieves gain of 4.374 dB with radiation pattern nearly half sphere, which is suitable for rooftop antenna of vehicles. The proposed antenna with dimension \(16\times 20 \times 1.6\,\text {mm}^3\) can be used for wireless and satellite communication. All the simulations have been done using commercially available finite element method (FEM) solver ANSYS-HFSS. Outmost precision has been taken by assigning \(\lambda \)/20 mm mesh size, and therefore the obtained results are much presized.


Patch antenna Zeroth-order resonator Printed antenna Wide beam width 


  1. 1.
    Ziolkowski, R.W., et al.: Composite medium with simultaneously negative permeability and permittivity. IEEE Trans. Antennas Propag. 51(7) (2003)Google Scholar
  2. 2.
    Kafesaki, M., et al.: Design of a two-dimensional metamaterial cloak with minimum scattering using a quadratic transformation function. J. Opt. A: Pure Appl. Opt. 7, 12–22 (2005)CrossRefGoogle Scholar
  3. 3.
    Constantine, A.B., et al.: A Compact Tunable Metamaterial Filter Based on Split-Ring Resonators. Antenna Theory and Design, vol. 13, pp. 120–122. Wiley, New York (1997)Google Scholar
  4. 4.
    Landy, et al.: Perfect metamaterial absorber. Phys. Rev. Lett. 100 (2008)Google Scholar
  5. 5.
    Lin, G., Guangming, W., Chenxin, Z.: CRLH T-lines form small antenna. Algorithms (2018)Google Scholar
  6. 6.
    Deshmukh, A.A., et al.: Compact broadband slotted rectangular microstrip antenna. IEEE Antennas Wireless Propag. Lett. 8, 410–1413 (2009)CrossRefGoogle Scholar
  7. 7.
    Waterhouse, R., et al.: Small microstrip patch antenna. Electron. Lett. 31(8), 604–605 (1995)CrossRefGoogle Scholar
  8. 8.
    Quevedo-Teruel, O., Pucci, E., Rajo-Iglesias, E.: Compact loaded PIFA for multifrequency applications. IEEE Trans. Antennas Propag. 58(3), 656–664 (2010)CrossRefGoogle Scholar
  9. 9.
    Yeh, S.H., et al.: Dual-band planar inverted F antenna for GSM/DCS mobile phones. IEEE Trans. Antennas Propag. 51(5), 1124–1126 (2003)CrossRefGoogle Scholar
  10. 10.
    Chang, F.S., et al.: Compact vertical patch antenna for dual-band WLAN operation. Electron. Lett. 44(10), 612–613 (2008)CrossRefGoogle Scholar
  11. 11.
    Peng, L., et al.: A novel compact broadband microstrip antenna. In: Proceedings of APMC, pp. 1–4 (2007)Google Scholar
  12. 12.
    Lau, K.L., et al.: Dual-band stacked folded shorted patch antenna. Electron. Lett. 43(15), 789–790 (2007)CrossRefGoogle Scholar
  13. 13.
    Chiu, C.Y., et al.: Small dual-band antenna with folded-patch technique. IEEE Antennas Wireless Propag. Lett. 3, 108–110 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Chetan Barde
    • 1
    Email author
  • Arvind Choubey
    • 1
  • Rashmi Sinha
    • 1
  • Santosh Kumar Mahto
    • 1
  • Prakash Ranjan
    • 1
  1. 1.Electronics and Communication EngineeringNational Institute of Technology JamshedpurJamshedpurIndia

Personalised recommendations