Assessment of Spectral-KMOD Composite Kernel-Based Supervised Noise Clustering Approach in Handling Nonlinear Separation of Classes

  • Ishuita SenGuptaEmail author
  • Anil Kumar
  • Rakesh Kumar Dwivedi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 904)


The paper propounds a concept of incorporating composite kernel methods with fuzzy-based image classifiers. The study incorporates noise classifier as a fuzzy classifier. The work demonstrates how nonlinearity among the different classes of remote sensing data with uncertainty is handled with noise classifier without entropy (fuzzy classifier) using composite kernel technique for land use/land cover maps generation. It also showcases the comparative study between the performance of Noise Classifier with Euclidean Distance and Noise Classifier with Composite Kernel functions. This study has incorporated the composition of two prominent kernels: Spectral and KMOD Kernel. The performance of both the classifier is evaluated in supervised mode and, image-to-image assessment of accuracy has been carried out using FERM (Fuzzy Error Matrix).


Fuzzy classifier Mixed pixel Composite kernel Noise classifier FERM 


  1. 1.
    Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)CrossRefGoogle Scholar
  2. 2.
    Upadhyay, P., Ghosh, S.K., Kumar, A: A brief review of fuzzy soft classification and assessment of accuracy methods for identification of single land cover. Stud. Surv. Mapp. Sci. (SSMS), 2(Mlc), 1–13 (2014)Google Scholar
  3. 3.
    Davé, R., Sen, S.: Noise clustering algorithm revisited. In: Annual Meeting of the North American Fuzzy Information Processing Society, 1997. NAFIPS’97, pp. 199–204. IEEE, New York (1997)Google Scholar
  4. 4.
    Chotiwattana, W.: Noise clustering algorithm based on kernel method. In: Advance Computing Conference. IACC 2009, pp. 56–60. IEEE, New York (2009)Google Scholar
  5. 5.
    Ayat, N.E., Cheriet, M., Remaki, L., Suen, C.Y: KMOD-a new support vector machine kernel with moderate decreasing. In: Proceedings of the Sixth International Conference on Document Analysis and Recognition, pp. 1215–1219 (2001)Google Scholar
  6. 6.
    Gu, Y., Jocelyn, C., Jia, X., Benediktsson, J.A.: Multiple kernel learning for hyperspectral image classification: a review. IEEE Trans. Geosci. Remote. Sens. (2017)Google Scholar
  7. 7.
    Vidnerova, P., Neruda, R.: Evolving sum and composite kernel functions for regularization networks. In: Adaptive and Natural Computing Algorithms, pp. 180–189 (2011)Google Scholar
  8. 8.
    Byju, A.P.: Non-Linear Separation of classes using a Kernel based Fuzzy c-Means (KFCM) Approach. M.Sc. Thesis, ITC, University of Twente, The Netherlands (2015)Google Scholar
  9. 9.
    Camps-Valls, G., Gomez-Chova, L., Mñnoz-Marí, J., Vila-Francés, J., Calpe-Maravilla, J.: Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. (2005)Google Scholar
  10. 10.
    Mittal, D., Tripathy, B.K: Efficiency analysis of kernel functions in uncertainty based C-means algorithms. In: 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 807–813 (2015)Google Scholar
  11. 11.
    Li, W., Ong, K.L., Ng, W.K., Sun, A.: Spectral kernels for classification. In: International Conference on Data Warehousing and Knowledge Discovery, DAWAK 2005, pp. 520–529 (2015)Google Scholar
  12. 12.
    Landsat-8 Specifications.
  13. 13.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ishuita SenGupta
    • 1
    Email author
  • Anil Kumar
    • 2
  • Rakesh Kumar Dwivedi
    • 1
  1. 1.College of Computing Sciences and Information TechnologyTeerthanker Mahaveer UniversityMoradabadIndia
  2. 2.Photogrammetry and Remote Sensing DepartmentIndian Institute of Remote SensingDehradunIndia

Personalised recommendations