Extractive Summary: An Optimization Approach Using Bat Algorithm

  • Anshuman PattanaikEmail author
  • Santwana Sagnika
  • Madhabananda Das
  • Bhabani Sankar Prasad Mishra
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 904)


A summary is the shorter version of the existing long text which elaborates the whole idea of the document. The most conventional and easy version of summarization is extractive text summarization. Extractive approach selects sentences from the original text based on some features. In automatic text summarization (ATS), it is a difficult task to select such sentences with high accuracy to meet the optimum meaning of the full text as compared to manual approaches. In this paper, author tries to represent extractive summary as an optimization problem where the objective is to cover maximum topics of the document and simultaneously minimize the redundancies between the sentences of the summary. Bat algorithm (BA) is used as an optimization technique which provides efficient result in creating an extractive summary.


Text summarization Extractive Sentence scoring Multi-objective optimization Bat algorithm TF-ISF 


  1. 1.
    Gambhir, M., Gupta, V.: Recent automatic text summarization techniques: a survey. Artif. Intell. Rev. 47(1), 1–66 (2017)CrossRefGoogle Scholar
  2. 2.
    Luhn, H.P.: The automatic creation of literature abstracts. IBM J. Res. Dev. 2(2), 159–165 (1958)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Jafari, M., et al.: Automatic text summarization using fuzzy inference. In: 2016 22nd International Conference on Automation and Computing (ICAC). IEEE (2016)Google Scholar
  4. 4.
    Alguliyev, R., Aliguliyev, R., Isazade, N.: A sentence selection model and HLO algorithm for extractive text summarization. In: 2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT). IEEE (2016)Google Scholar
  5. 5.
    García-Hernández, R.A., Ledeneva, Y.: Single extractive text summarization based on a genetic algorithm. In: Mexican Conference on Pattern Recognition. Springer, Berlin, Heidelberg (2013)Google Scholar
  6. 6.
    Binwahlan, M.S., Salim, N., Suanmali, L.: Swarm based text summarization. In: International Association of Computer Science and Information Technology-Spring Conference, 2009. IACSITSC’09. IEEE (2009)Google Scholar
  7. 7.
    Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74. Springer, Berlin, Heidelberg (2010)Google Scholar
  8. 8.
    Sagnika, S., Bilgaiyan, S., Mishra, B.S.P.: Workflow scheduling in cloud computing environment using Bat Algorithm. In: Proceedings of First International Conference on Smart System, Innovations and Computing. Springer, Singapore (2018)Google Scholar
  9. 9.
    Baxendale, P.B.: Machine-made index for technical literature—an experiment. IBM J. Res. Dev. 2(4), 354–361 (1958)CrossRefGoogle Scholar
  10. 10.
    Edmundson, H.P.: New methods in automatic extracting. J. ACM (JACM) 16(2), 264–285 (1969)CrossRefGoogle Scholar
  11. 11.
    Nobata, C., et al.: Sentence Extraction System Assembling Multiple Evidence. NTCIR (2001)Google Scholar
  12. 12.
    Matsuo, Y., Ishizuka, M.: Keyword extraction from a single document using word co-occurrence statistical information. Int. J. Artif. Intell. Tools 13(01), 157–169 (2004)CrossRefGoogle Scholar
  13. 13.
    Malik, R., L. V. Subramaniam, S. Kaushik. Automatically selecting answer templates to respond to customer emails. IJCAI 7(1659) (2007)Google Scholar
  14. 14.
    Sharifzadeh, M., Bashash, K., Bashokian, S.: A Comparison with Two Semantic Sensor Data Storages in Total Data Transmission. arXiv preprint arXiv:1401.7499 (2014)
  15. 15.
    Yang, X.-S.: Bat Algorithm: literature review and applications. Int. J. Bio-Inspired Comput. 5(3), 141–149 (2013)CrossRefGoogle Scholar
  16. 16.
    Yılmaz, S., Küçüksille, E.U.: A new modification approach on bat algorithm for solving optimization problems. Appl. Soft Comput. 28, 259–275 (2015)CrossRefGoogle Scholar
  17. 17.
    Gan, W.-Y., et al. Community discovery method in networks based on topological potential. J. Softw. 20(8), 2241–2254 (2009)Google Scholar
  18. 18.
    Niwattanakul, S., et al.: Using of Jaccard coefficient for keywords similarity. In: Proceedings of the International Multi Conference of Engineers and Computer Scientists, Vol. 1. No. 6 (2013)Google Scholar
  19. 19.
    Nguyen, H.V., Bai, L.: Cosine Similarity Metric Learning for Face Verification. Asian Conference on Computer Vision. Springer, Berlin (2010)Google Scholar
  20. 20.
    Alguliyev, R.M., Aliguliyev, R.M., Isazade, N.R.: An unsupervised approach to generating generic summaries of documents. Appl. Soft Comput. 34, 236–250 (2015)CrossRefGoogle Scholar
  21. 21.
    Yeniay, Ö.: Penalty function methods for constrained optimization with genetic algorithms. Math. Comput. Appl. 10(1), 45–56 (2005)MathSciNetGoogle Scholar
  22. 22.
  23. 23.
    Lin, C.-Y.: Rouge: a package for automatic evaluation of summaries. Text summarization branches out (2004)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Anshuman Pattanaik
    • 1
    Email author
  • Santwana Sagnika
    • 1
  • Madhabananda Das
    • 1
  • Bhabani Sankar Prasad Mishra
    • 1
  1. 1.School of Computer EngineeringKalinga Institute of Industrial Technology, (Deemed-to-be University)BhubaneswarIndia

Personalised recommendations