Advertisement

A Comprehensive Survey on Artificial Bee Colony Algorithm as a Frontier in Swarm Intelligence

  • Shiv Kumar AgarwalEmail author
  • Surendra Yadav
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 904)

Abstract

The nature is an intrinsic basis of idea for researchers continuously working in the area of optimization. The Artificial Bee Colony (ABC) algorithm imitates the foraging behavior of real honeybees and it is effectively used to solve multi-model and complex problems. Various strategies is developed on the behavior of honeybees but ABC is the most popular among all. The ABC algorithm is used to get rid of difficult real-world optimization problems that are not solvable by conventional methods. This paper presents a state-of-the-art study of ABC and its latest modifications with in-depth evaluation and analysis of recent popular variants of ABC.

Keywords

Artificial bee colony algorithm Engineering optimization Swarm intelligence Foraging behavior 

References

  1. 1.
    Anuar, S., Selamat, A., Sallehuddin, R.: A modified scout bee for artificial bee colony algorithm and its performance on optimization problems. J. King Saud Univ.-Comput. Inf. Sci. 28(4), 395–406 (2016)Google Scholar
  2. 2.
    Banharnsakun, A., Achalakul, T., Sirinaovakul, B.: The best-so-far selection in artificial bee colony algorithm. Appl. Soft Comput. 11(2), 2888–2901 (2011)CrossRefGoogle Scholar
  3. 3.
    Bansal, J.C., Gopal, A., Nagar, A.K.: Stability analysis of artificial bee colony optimization algorithm. Swarm Evol. Comput. (2018)Google Scholar
  4. 4.
    Bansal, J.C., Jadon, S.S., Tiwari, R., Kiran, D., Panigrahi, B.K.: Optimal power flow using artificial bee colony algorithm with global and local neighborhoods. Int. J. Syst. Assur. Eng. Manag. 8(4), 2158–2169 (2017)CrossRefGoogle Scholar
  5. 5.
    Bansal, J.C., Sharma, H., Arya, K.V., Deep, K., Pant, M.: Self-adaptive artificial bee colony. Optimization 63(10), 1513–1532 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bansal, J.C., Sharma, H., Arya, K.V., Nagar, A.: Memetic search in artificial bee colony algorithm. Soft Comput. 17(10), 1911–1928 (2013)CrossRefGoogle Scholar
  7. 7.
    Bansal, J.C., Sharma, H., Jadon, S.S.: Artificial bee colony algorithm: a survey. Int. J. Adv. Intell. Parad. 5(1–2), 123–159 (2013)Google Scholar
  8. 8.
    Bhambu, P., Sharma, S., Kumar, S.: Modified gbest artificial bee colony algorithm. In: Soft Computing: Theories and Applications, pp. 665–677. Springer, Berlin (2018)Google Scholar
  9. 9.
    Cui, L., Li, G., Wang, X., Lin, Q., Chen, J., Lu, N., Lu, J.: A ranking-based adaptive artificial bee colony algorithm for global numerical optimization. Inf. Sci. 417, 169–185 (2017)CrossRefGoogle Scholar
  10. 10.
    El-Abd, M.: Opposition-based artificial bee colony algorithm. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 109–116. ACM, New York (2011)Google Scholar
  11. 11.
    Huo, Y., Zhuang, Y., Gu, J., Ni, S., Xue, Y.: Discrete gbest-guided artificial bee colony algorithm for cloud service composition. Appl. Intell. 42(4), 661–678 (2015)CrossRefGoogle Scholar
  12. 12.
    Hussain, A., Gupta, S., Singh, R., Trivedi, P., Sharma, H.: Shrinking hyper-sphere based artificial bee colony algorithm. In: 2015 International Conference on Computer, Communication and Control (IC4), pp. 1–6. IEEE, New York (2015)Google Scholar
  13. 13.
    Jadhav, H.T., Roy, R.: Gbest guided artificial bee colony algorithm for environmental/economic dispatch considering wind power. Expert. Syst. Appl. 40(16), 6385–6399 (2013)Google Scholar
  14. 14.
    Jadon, S.S., Chand Bansal, J., Tiwari, R., Sharma, H.: Accelerating artificial bee colony algorithm with adaptive local search. Memetic Comput. 7(3), 215–230 (2015)CrossRefGoogle Scholar
  15. 15.
    Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes Univ. Press, Erciyes (2005)Google Scholar
  16. 16.
    Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Karaboga, D., Akay, B., Ozturk, C.: Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks. In: International Conference on Modeling Decisions for Artificial Intelligence, pp. 318–329. Springer, Berlin (2007)Google Scholar
  18. 18.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)CrossRefGoogle Scholar
  20. 20.
    Karaboga, D., Kaya, E.: An adaptive and hybrid artificial bee colony algorithm (ABC) for anfis training. Appl. Soft Comput. 49, 423–436 (2016)CrossRefGoogle Scholar
  21. 21.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Proceedings, vol. 4, pp. 1942–1948. IEEE, New York (1995)Google Scholar
  22. 22.
    Kumar, D., Mishra, K.K.: Artificial bee colony as a frontier in evolutionary optimization: a survey. In: Advances in Computer and Computational Sciences, pp. 541–548. Springer, Berlin (2017)Google Scholar
  23. 23.
    Kumar, S., Bhambu, P., Sharma, V.K.: New local search strategy in artificial bee colony algorithm. Int. J. Comput. Sci. Inf. Technol. 5(2), 2559–2565 (2014)Google Scholar
  24. 24.
    Kumar, S., Kumar, A., Sharma, V.K., Sharma, H.: A novel hybrid memetic search in artificial bee colony algorithm. In: 2014 Seventh International Conference on Contemporary Computing (IC3), pp. 68–73. IEEE, New York (2014)Google Scholar
  25. 25.
    Kumar, S., Sharma, V.K., Kumari, R.: Comparative study of hybrids of artificial bee colony algorithm. Int. J. Inf. Commun. Comput. Technol. 1(2), 20–28 (2014)Google Scholar
  26. 26.
    Kumar, S., Sharma, V.K., Kumari, R.: An improved memetic search in artificial bee colony algorithm. Int. J. Comput. Sci. Inform. Technol. (0975–9646) 5(2), 1237–47 (2014)Google Scholar
  27. 27.
    Kumar, S., Sharma, V.K., Kumari, R.: Improved onlooker bee phase in artificial bee colony algorithm. Int. J. Comput. Appl. 90(6), 20–25 (2014)Google Scholar
  28. 28.
    Kumar, S., Sharma, V.K., Kumari, R.: Memetic search in artificial bee colony algorithm with fitness based position update. In: Recent Advances and Innovations in Engineering (ICRAIE), 2014, pp. 1–6. IEEE, New York (2014)Google Scholar
  29. 29.
    Kumar, S., Sharma, V.K., Kumari, R.: A novel hybrid crossover based artificial bee colony algorithm for optimization problem. arXiv preprint arXiv:1407.5574 (2014)
  30. 30.
    Kumar, S., Sharma, V.K., Kumari, R.: Randomized memetic artificial bee colony algorithm. arXiv preprint arXiv:1408.0102 (2014)
  31. 31.
    Price, K.V.: Differential evolution: a fast and simple numerical optimizer. In: Proceedings of Biennial Conference of the North American on Fuzzy Information Processing Society (NAFIPS), pp. 524–527. IEEE, New York (1996)Google Scholar
  32. 32.
    Sharma, H., Bansal, J.C., Arya, K.V.: Opposition based Lévy flight artificial bee colony. Memetic Comput. 5(3), 213–227 (2013)CrossRefGoogle Scholar
  33. 33.
    Sharma, H., Sharma, S., Kumar, S.: Lbest gbest artificial bee colony algorithm. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 893–898. IEEE, New York (2016)Google Scholar
  34. 34.
    Sharma, K., Gupta, P.C., Sharma, H.: Fully informed artificial bee colony algorithm. J. Exp. Theor. Artif. Intell. 28(1–2), 403–416 (2016)CrossRefGoogle Scholar
  35. 35.
    Sharma, N., Sharma, H., Sharma, A., Bansal, J.C.: Modified artificial bee colony algorithm based on disruption operator. In: Proceedings of Fifth International Conference on Soft Computing for Problem Solving, pp. 889–900. Springer, Berlin (2016)Google Scholar
  36. 36.
    Sharma, S., Bhambu, P.: Artificial bee colony algorithm: a survey. Int. J. Comput. Appl. 149(4) (2016)Google Scholar
  37. 37.
    Sharma, T.K., Pant, M.: Shuffled artificial bee colony algorithm. Soft Comput. 21(20), 6085–6104 (2017)CrossRefGoogle Scholar
  38. 38.
    Tiwari, P., Kumar, S.: Weight driven position update artificial bee colony algorithm. In: International Conference on Advances in Computing, Communication, & Automation (ICACCA) (Fall), pp. 1–6. IEEE, New York (2016)Google Scholar
  39. 39.
    Zhou, S., Feng, D., Ding, P.: A novel global ABC algorithm with self-perturbing. J. Intell. Syst. 26(4), 729–740 (2017)Google Scholar
  40. 40.
    Zhu, G., Kwong, S.: Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput. 217(7), 3166–3173 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringCareer Point UniversityKotaIndia

Personalised recommendations