Advertisement

Freeze-Fracture Transmission Electron Microscopy

  • Koji TsuchiyaEmail author
Chapter

Abstract

Freeze-fracture transmission electron microscopy (FF-TEM) gives us useful information about the structure of molecular aggregates, colloidal dispersions, and emulsions. Rapidly frozen samples are fractured with a glass knife. Platinum (Pt) is evaporated and deposited on the fractured surface at 45° to make a thin Pt film. This “shadowing” process induces an enhancement of the contrast of the TEM image depending on the roughness of the fractured surface. Carbon (C) is then evaporated and deposited on the fractured surface at 90° to make a “replica” film. The replica film thus prepared is observed with a transmission electron microscope at high resolution. FF-TEM allows observation of almost all molecular aggregates formed by amphiphilic molecules (surfactants) and colloidal particles like emulsion dispersed in both water and organic solvents. In liposome (vesicle) systems, characteristic TEM images can be obtained depending on the conformation of hydrophobic tails of lipid molecules, that is, gel phase (Lβ), ripple gel phase (Pβ), and liquid crystal phase (Lα).

Keywords

Freeze-fracture TEM Freeze-etching TEM Replica films Rapid freezing 

References

  1. 1.
    J.A.N. Zasadzinski, S.M. Bailey, J. Electron. Microsc. Tech. 13, 309–334 (1989)CrossRefGoogle Scholar
  2. 2.
    W. Knoll, G. Schmidt, K. Ibel, E. Sackmann, Biochemistry 24, 5240–5246 (1985)CrossRefGoogle Scholar
  3. 3.
    O. Mondain-Monval, Curr. Opin. Colloid Interface Sci. 10, 250–255 (2005)CrossRefGoogle Scholar
  4. 4.
    Y. Shen, H. Hoffmann, J. Hao, Langmuir 25, 10540–10547 (2009)CrossRefGoogle Scholar
  5. 5.
    J. Hao, H. Hoffmann, K. Horbaschek, J. Phys. Chem. B 104, 10144–10153 (2000)CrossRefGoogle Scholar
  6. 6.
    H. Hoffmann, C. Thunig, P. Schmiedel, U. Munkert, Langmuir 10, 3972–3981 (1994)CrossRefGoogle Scholar
  7. 7.
    K. Tsuchiya, H. Nakanishi, H. Sakai, M. Abe, Langmuir 20, 2117–2122 (2004)CrossRefGoogle Scholar
  8. 8.
    B.R. Copeland, H.M. McConnel, Biochim. Biophys. Acta Biomembr. 599, 95–109 (1980)CrossRefGoogle Scholar
  9. 9.
    J.A.N. Zasadzinski, Biochim. Biophys. Acta Biomembr. 946, 235–243 (1988)CrossRefGoogle Scholar
  10. 10.
    A. Csiszar, E. Klumpp, A. Bota, K. Szegedi, Chem. Phys. Lipids 126, 155–166 (2003)CrossRefGoogle Scholar
  11. 11.
    K. Otake, T. Shimomura, T. Goto, T. Imura, T. Furuya, S. Yoda, Y. Takebayashi, H. Sakai, M. Abe, Langmuir 22, 2543–2550 (2006)CrossRefGoogle Scholar
  12. 12.
    P.M. Frederik, W.M. Busing, J. Microsc. 121, 191–199 (1981)CrossRefGoogle Scholar
  13. 13.
    N.M. Packter, E.R. Olukoshi, Arch. Microbiol. 164, 420–427 (1995)CrossRefGoogle Scholar
  14. 14.
    Y. Shang, H. Liu, Y. Hu, J.M. Prausnitz, Colloids Surf. A Physicochem. Eng. Asp. 294, 203–211 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Research Institute for Science and TechnologyTokyo University of ScienceNodaJapan

Personalised recommendations