Evaluation for Two Bloom Filters’ Configuration

  • Chenxi Luo
  • Zhu WangEmail author
  • Tiejian Luo
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 931)


Bloom filter has been widely used in distributed systems. There are two typical types of Bloom filter construction methods. Past works have the notion that those two approaches have similar false positive rate. In this paper, our work reveals that there are significant differences of false positive rate within Bloom Filter’s configuration. Furthermore, our experiment suggests that parameters’ setting up demonstrates an impact on Bloom Filter’s behaviour. According to the results, it is vital for adjusting the Bloom filter parameters while the index space is limited.


Bloom filter False positive rate 


  1. 1.
    Bonomi, F., Mitzenmacher, M., Panigrahy, R., Singh, S., Varghese, G.: An improved construction for counting bloom filters. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 684–695. Springer, Heidelberg (2006). Scholar
  2. 2.
    Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area web cache sharing protocol. IEEE/ACM Trans. Netw. 8(3), 281–293 (2000)CrossRefGoogle Scholar
  3. 3.
    Ficara, D., Giordano, S., Procissi, G., Vitucci, F.: Multilayer compressed counting bloom filters. In: Proceedings of the 27th Conference on Computer Communications (INFOCOM), pp. 311–315. IEEE (2008)Google Scholar
  4. 4.
    Song, H., Dharmapurikar, S., Turner, J., Lockwood, J.: Fast hash table lookup using extended bloom filter: an aid to network processing. In: Proceedings of the 2005 Conference on Applications, Technologies, Architectures and Protocols for Computer Communications (SIGCOMM), pp. 181–192. ACM (2005)Google Scholar
  5. 5.
    Bonomi, F., Mitzenmacher, M., Panigrah, R., Singh, S., Varghese, G.: Beyond bloom filters: from approximate membership checks to approximate state machines. In: Proceedings of the 2006 Conference on Applications, Technologies, Architectures and Protocols for Computer Communications (SIGCOMM), pp. 315–326. ACM (2006)Google Scholar
  6. 6.
    Sung, M., Xu, J., Li, J., Li, L.: Large-scale ip traceback in high-speed internet: Practical techniques and information-theoretic foundation. IEEE/ACM Trans. Netw. 16(6), 1253–1266 (2008)CrossRefGoogle Scholar
  7. 7.
    Wang, Z., Luo, T.: Intelligent video content routing in a direct access network. In: Proceedings of the 3rd Symposium on Web Society, pp. 147–152. IEEE Computer Society (2011)Google Scholar
  8. 8.
    Wang, Z., Luo, T., Xu, Y., Cheng, F., Zhang, X., Wang, X.: A fast indexing algorithm optimization with user behavior pattern. In: Zu, Q., Hu, B., Elçi, A. (eds.) ICPCA/SWS 2012. LNCS, vol. 7719, pp. 592–605. Springer, Heidelberg (2013). Scholar
  9. 9.
    Du, Y., Wang, S.: Two-stage adaptive bloom filters for per-flow monitoring in software defined networks. In: Proceedings of the 2018 IEEE International Conference on Communications (ICC), pp. 1–7. IEEE (2018)Google Scholar
  10. 10.
    Lei, K., Li, K., Huang, J., Li, W., Xing, J., Wang, Y.: Measuring the control-data plane consistency in software defined networking. In: Proceedings of the 2018 IEEE International Conference on Communications (ICC), pp. 1–7. IEEE (2018)Google Scholar
  11. 11.
    Jokela, P., Zahemszky, A., Rothenberg, C.E., Arianfar, S., Nikander, P.: Lipsin: line speed publish/subscribe inter-networking. In: Proceedings of the 2009 Conference on Applications, Technologies, Architectures and Protocols for Computer Communications (SIGCOMM), pp. 195–206. ACM (2009)CrossRefGoogle Scholar
  12. 12.
    Chen, T., Guo, D., He, Y., Chen, H., Liu, X., Luo, X.: A bloom filters based dissemination protocol in wireless sensor networks. Ad Hoc Netw. 11(4), 1359–1371 (2013)CrossRefGoogle Scholar
  13. 13.
    Takiguchi, T., Saruwatari, S., Morito, T., Ishida, S., Minami, M., Morikawa, H.: A novel wireless wake-up mechanism for energy-efficient ubiquitous networks. In: Proceedings of the 2009 IEEE International Conference on Communications Workshops, pp. 1–5. IEEE (2009)Google Scholar
  14. 14.
    Ghosh, M., Özer, E., Biles, S., Lee, Hsien-Hsin S.: Efficient system-on-chip energy management with a segmented bloom filter. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS, vol. 3894, pp. 283–297. Springer, Heidelberg (2006). Scholar
  15. 15.
    Jimeno, M.: Saving Energy in Network Hosts with an Application Layer Proxy: Design and Evaluation of New Methods that Utilize Improved Bloom Filters. PhD thesis, University of South Florida (2010)Google Scholar
  16. 16.
    Qwasmi, N., Liscano, R.: Bloom filter supporting distributed policy-based management in wireless sensor networks. In: Proceedings of the 4th International Conference on Ambient Systems, Networks and Technologies, pp. 248–255. Elsevier (2013)Google Scholar
  17. 17.
    Wang, Z., Luo, C., Luo, T.: Selection optimization of bloom filter-based index services in ubiquitous embedded systems. In: Jin, H., Wang, Q., Zhang, L.-J. (eds.) ICWS 2018. LNCS, vol. 10966, pp. 231–245. Springer, Cham (2018). Scholar
  18. 18.
    Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)CrossRefGoogle Scholar
  19. 19.
    Broder, A., Mitzenmacher, M.: Network applications of bloom filters: a survey. Internet Math. 1(4), 485–509 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Software, Chinese Academy of SciencesBeijingChina
  2. 2.Xingtang Telecommunications Technology Co. Ltd.BeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations