Analysis of Massive E-learning Processes: An Approach Based on Big Association Rules Mining

  • Asma HassaniEmail author
  • Sonia Ayachi GhannouchiEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 931)


In today’s learning environments (MOOCs), process learning in highly dynamic. This dynamicity generates a large volume of data describing the handling of such processes. Mining that data is a powerful discipline for getting valuable insights. Thus big data mining becomes more and more an integral part of handling a business process management (BPM) project. Furthermore, using data mining outputs to extend process model with additional knowledge allows to provide more details for future process improvement. In this paper we aim to apply data mining techniques (Association rules mining) to recorded data in the context of massive learning process.


Learning process MOOCs Analytics BPM Association rules mining Big data 


  1. 1.
    Helic, D.: Technology-supported management of collaborative learning processes. Int. J. Learn. Change 1(3), 285 (2006)CrossRefGoogle Scholar
  2. 2.
    Onah, D.F.O., Sinclair, J., Boyatt, R.: Dropout rates of massive open online courses: behavioural patterns. In: EDULEARN14 Proceedings, pp. 5825–5834 (2014)Google Scholar
  3. 3.
    Vera-Baquero, A., Colomo-Palacios, R., Molloy, O.: Business process analytics using a big data approach. IT Prof. 15(6), 29–35 (2013)CrossRefGoogle Scholar
  4. 4.
    Vergidis, K., Tiwari, A., Majeed, B.: Business process analysis and optimization: beyond reengineering. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 38(1), 69–82 (2008)CrossRefGoogle Scholar
  5. 5.
    Cesarini, M., Monga, M., Tedesco, R.: Carrying on the e-learning process with a workflow management engine. In: Proceedings of the 2004 ACM Symposium on Applied Computing, New York, NY, USA, pp. 940–945 (2004)Google Scholar
  6. 6.
    Lin, J., Ho, C., Sadiq, W., Orlowska, M.E.: Using workflow technology to manage flexible e-learning services. J. Educ. Technol. Soc. 5(4), 116–123 (2002)Google Scholar
  7. 7.
    Siemens, G., Baker, R.S.J.d.: Learning analytics and educational data mining: towards communication and collaboration. In: Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, New York, NY, USA, pp. 252–254 (2012)Google Scholar
  8. 8.
    Ioniţă, I.: Data mining techniques for e-learning. J. Appl. Comput. Sci. Math. 10, 26–31 (2016)CrossRefGoogle Scholar
  9. 9.
    Castro, F., Vellido, A., Nebot, À., Mugica, F., México, H.: Applying Data Mining Techniques to E-learning Problems: A Survey and State of the Art: Evolution of Technology and Pedagogy. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Costa, C.J., Aparicio, M.: Analysis of e-learning processes. In: Proceedings of the 2011 Workshop on Open Source and Design of Communication, New York, NY, USA, pp. 37–40 (2011)Google Scholar
  11. 11.
    van der Aalst, W.: Process mining: overview and opportunities. ACM Trans. Manag. Inf. Syst. 3(2), 7:1–7:17 (2012)Google Scholar
  12. 12.
    van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). Scholar
  13. 13.
    Bergenthum, R., Desel, J., Harrer, A., Mauser, S.: Modeling and mining of learnflows. In: Jensen, K., Donatelli, S., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency V. LNCS, vol. 6900, pp. 22–50. Springer, Heidelberg (2012). Scholar
  14. 14.
    Bogarín, A., Romero, C., Cerezo, R., Sánchez-Santillán, M.: Clustering for improving educational process mining. In: Proceedings of the Fourth International Conference on Learning Analytics and Knowledge, New York, NY, USA, pp. 11–15 (2014)Google Scholar
  15. 15.
    Netjes, M., Reijers, H.A.: Supporting the BPM life-cycle with FileNet. In: Proceedings of the CAISE, pp. 497–508 (2006)Google Scholar
  16. 16.
    Helic, D., Hrastnik, J., Maurer, H.: An analysis of application of business process management technology in e-learning systems. In: E-Learn: World Conference on E-Learning in Corporate, Government; Healthcare, and Higher Education, pp. 2937–2942 (2005)Google Scholar
  17. 17.
    Rakesh, A., Imielinski, T., Road, H.: Mining association rules between sets of items in large databases. ACM SIGMOD Rec. 22(2), 207–216 (1993)CrossRefGoogle Scholar
  18. 18.
    Li, N., Zeng, L., He, Q., Shi, Z.: Parallel implementation of apriori algorithm based on MapReduce (2012)Google Scholar
  19. 19.
    Singh, S., Garg, R., Mishra, P.K.: Review of Apriori Based Algorithms on MapReduce Framework (2017). arXiv:1702.06284 [cs]
  20. 20.
    Wang, J., Dai, Q.-H., Zeng, Y., Yang, D.-R.: Association rule mining with parallel frequent pattern growth algorithm on hadoop. Comput. Integr. Manuf. Syst. 18(9), 2124–2129 (2012)Google Scholar
  21. 21.
    Wei, X., Ma, Y., Zhang, F.: Incremental FP-growth mining strategy for dynamic threshold value and database based on MapReduce. In: Computer Supported Cooperative Work in Design, CSCWD, pp. 271–276 (2014)Google Scholar
  22. 22.
    Rozinat, A., van der Aalst, W.M.P.: Decision mining in ProM. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg (2006). Scholar
  23. 23.
    Giraldo, J., Jiménez, J., Tabares, M.: Integrating business process management and data mining for organizational decision making (2015)Google Scholar
  24. 24.
    Wegener, D., Rüping, S.: On integrating data mining into business processes. In: Abramowicz, W., Tolksdorf, R. (eds.) BIS 2010. LNBIP, vol. 47, pp. 183–194. Springer, Heidelberg (2010). Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.ISITCom Hammam Sousse, RIADI Laboratory, ENSI ManoubaManoubaTunisia
  2. 2.ISG Sousse, RIADI Laboratory, ENSI ManoubaManoubaTunisia

Personalised recommendations