Advertisement

Generation and Regulation of Spontaneous Contractions in the Prostate

  • Basu Chakrabarty
  • Sophie Lee
  • Betty ExintarisEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1124)

Abstract

Spontaneous myogenic contractions have been shown to be significantly upregulated in prostate tissue collected from men with Benign Prostatic Hyperplasia (BPH), an extremely common disorder of the ageing male. Although originally thought likely to be involved in ‘housekeeping’ functions, mixing prostatic secretions to prevent stagnation, these spontaneous myogenic contractions provide a novel opportunity to understand and treat BPH. This treatment potential differs from previous models, which focused exclusively on attenuating nerve-mediated neurogenic contractions. Previous studies in the rodent prostate have provided an insight into the mechanisms underlying the regulation of myogenic contractions. ‘Prostatic Interstitial Cells’ (PICs) within the prostate appear to generate pacemaker potentials, which arise from the summation of number of spontaneous transient depolarisations triggered by the spontaneous release of Ca2+ from internal stores and the opening of Ca2+-activated Cl channels. Pacemaker potentials then conduct into neighbouring smooth muscle cells to generate spontaneous slow waves. These slow waves trigger the firing of ‘spike-like’ action potentials, Ca2+ entry and contraction, which are not attenuated by blockers of neurotransmission. However, these spontaneous prostatic contractions can be modulated by the autonomic nervous system. Here, we discuss the mechanisms underlying rodent and human prostate myogenic contractions and the actions of existing and novel pharmacotherapies for the treatment of BPH. Understanding the generation of human prostatic smooth muscle tone will confirm the mechanism of action of existing drugs, inform the identification and effectiveness of new pharmacotherapies, as well as predict patient outcomes.

Keywords

Prostate Slow wave activity Pacemaker activity Benign prostatic hyperplasia Spontaneous activity Prostatic interstitial cells 

References

  1. 1.
    Wein AJ, Kavoussi LR, Novick AC, Partin AW, Peters CA. Campbell-Walsh urology. 10th ed. Philadelphia: Saunders; 2011.Google Scholar
  2. 2.
    Amelar RD, Hotchkiss RS. The split ejaculate: its use in the management of male infertility. Fertil Steril. 1965;16:46–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Tauber PF, Zaneveld LJ, Propping D, Schumacher GF. Components of human split ejaculates. I. Spermatozoa, fructose, immunoglobulins, albumin, lactoferrin, transferrin and other plasma proteins. J Reprod Fertil. 1975;43(2):249–67.PubMedCrossRefGoogle Scholar
  4. 4.
    Tauber PF, Zaneveld LJ, Propping D, Schumacher GF. Components of human split ejaculates. II. Enzymes and proteinase inhibitors. J Reprod Fertil. 1976;46(1):165–71.PubMedCrossRefGoogle Scholar
  5. 5.
    Kavanagh JP. Isocitric and citric acid in human prostatic and seminal fluid: implications for prostatic metabolism and secretion. Prostate. 1994;24(3):139–42.PubMedCrossRefGoogle Scholar
  6. 6.
    van der Graaf M, Schipper RG, Oosterhof GO, Schalken JA, Verhofstad AA, Heerschap A. Proton MR spectroscopy of prostatic tissue focused on the detection of spermine, a possible biomarker of malignant behavior in prostate cancer. MAGMA. 2000;10(3):153–9.PubMedGoogle Scholar
  7. 7.
    Bedwal RS, Bahuguna A. Zinc, copper and selenium in reproduction. Experientia. 1994;50(7):626–40.PubMedCrossRefGoogle Scholar
  8. 8.
    Ablin RJ, Soanes WA, Bronson P, Witebsky E. Precipitating antigens of the normal human prostate. J Reprod Fertil. 1970;22(3):573–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Rittenhouse HG, Finlay JA, Mikolajczyk SD, Partin AW. Human Kallikrein 2 (hK2) and prostate-specific antigen (PSA): two closely related, but distinct, kallikreins in the prostate. Crit Rev Clin Lab Sci. 1998;35(4):275–368.PubMedCrossRefGoogle Scholar
  10. 10.
    Nelson PS, Gan L, Ferguson C, Moss P, Gelinas R, Hood L, et al. Molecular cloning and characterization of prostase, an androgen-regulated serine protease with prostate-restricted expression. Proc Natl Acad Sci U S A. 1999;96(6):3114–9.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Chu TM, Wang MC, Kuciel R, Valenzuela L, Murphy GP. Enzyme markers in human prostatic carcinoma. Cancer Treat Rep. 1977;61(2):193–200.PubMedGoogle Scholar
  12. 12.
    Dube JY, Frenette G, Paquin R, Chapdelaine P, Tremblay J, Tremblay RR, et al. Isolation from human seminal plasma of an abundant 16-kDa protein originating from the prostate, its identification with a 94-residue peptide originally described as beta-inhibin. J Androl. 1987;8(3):182–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Lin MF, Clinton GM. Human prostatic acid phosphatase has phosphotyrosyl protein phosphatase activity. Biochem J. 1986;235(2):351–7.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Niemi M, Harkonen M, Larmi TK. Enzymic histochemistry of human prostate. Localization of oxidative enzymes, esterase, and aminopeptidase in the normal and hyperplastic human prostate. Arch Pathol. 1963;75:528–37.PubMedGoogle Scholar
  15. 15.
    Denis LJ, Prout GR Jr. Lactic dehydrogenase in prostatic cancer. Investig Urol. 1963;1:101–11.Google Scholar
  16. 16.
    Grayhack JT, Wendel EF, Oliver L, Lee C. Analysis of specific proteins in prostatic fluid for detecting prostatic malignancy. J Urol. 1979;121(3):295–9.PubMedCrossRefGoogle Scholar
  17. 17.
    McNeal JE. Regional morphology and pathology of the prostate. Am J Clin Pathol. 1968;49(3):347–57.PubMedCrossRefGoogle Scholar
  18. 18.
    McNeal JE. The prostate and prostatic urethra: a morphologic synthesis. J Urol. 1972;107(6):1008–16.PubMedCrossRefGoogle Scholar
  19. 19.
    McNeal JE. Origin and evolution of benign prostatic enlargement. Investig Urol. 1978;15(4):340–5.Google Scholar
  20. 20.
    McNeal JE. The zonal anatomy of the prostate. Prostate. 1981;2(1):35–49.PubMedCrossRefGoogle Scholar
  21. 21.
    McNeal JE. Normal histology of the prostate. Am J Surg Pathol. 1988;12(8):619–33.PubMedCrossRefGoogle Scholar
  22. 22.
    Ayala AG, Ro JY, Babaian R, Troncoso P, Grignon DJ. The prostatic capsule: does it exist? Its importance in the staging and treatment of prostatic carcinoma. Am J Surg Pathol. 1989;13(1):21–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Oliveira DS, Dzinic S, Bonfil AI, Saliganan AD, Sheng S, Bonfil RD. The mouse prostate: a basic anatomical and histological guideline. Bosn J Basic Med Sci. 2016;16(1):8–13.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Neuhaus D, Mondry S. Comparative anatomy of the male guinea-pig and human lower urinary tract: histomorphology and three-dimensional reconstruction. Anat Histol Embryol. 2001;30(3):185–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Wang Y, Hayward S, Cao M, Thayer K, Cunha G. Cell differentiation lineage in the prostate. Differentiation. 2001;68(4–5):270–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Cunha GR, Hayward SW, Wang YZ, Ricke WA. Role of the stromal microenvironment in carcinogenesis of the prostate. Int J Cancer. 2003;107(1):1–10.PubMedCrossRefGoogle Scholar
  27. 27.
    Toivanen R, Shen MM. Prostate organogenesis: tissue induction, hormonal regulation and cell type specification. Development. 2017;144(8):1382–98.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Gkonos PJ, Krongrad A, Roos BA. Neuroendocrine peptides in the prostate. Urol Res. 1995;23(2):81–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Shafik A, Shafik I, el-Sibai O. Identification of c-kit-positive cells in the human prostate: the interstitial cells of Cajal. Arch Androl. 2005;51(5):345–51.PubMedCrossRefGoogle Scholar
  30. 30.
    Huizinga JD, Liu LW, Blennerhassett MG, Thuneberg L, Molleman A. Intercellular communication in smooth muscle. Experientia. 1992;48(10):932–41.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    El-Alfy M, Pelletier G, Hermo LS, Labrie F. Unique features of the basal cells of human prostate epithelium. Microsc Res Tech. 2000;51(5):436–46.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Kellokumpu-Lehtinen P, Santti R, Pelliniemi LJ. Correlation of early cytodifferentiation of the human fetal prostate and Leydig cells. Anat Rec. 1980;196(3):263–73.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Farnsworth WE, Brown JR. Testosterone metabolism in the prostate. Natl Cancer Inst Monogr. 1963;12:323–9.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Shimazaki J, Kurihara H, Ito Y, Shida K. Metabolism of testosterone in prostate. 2. Separation of prostatic 17-beta-ol-dehydrogenase and 5-alpha-reductase. Gunma J Med Sci. 1965;14(4):326–33.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Wilson JD. The critical role of androgens in prostate development. Endocrinol Metab Clin N Am. 2011;40(3):577–90.. ixCrossRefGoogle Scholar
  36. 36.
    Cunha GR, Donjacour AA, Cooke PS, Mee S, Bigsby RM, Higgins SJ, et al. The endocrinology and developmental biology of the prostate. Endocr Rev. 1987;8(3):338–62.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Prins GS, Putz O. Molecular signaling pathways that regulate prostate gland development. Differentiation. 2008;76(6):641–59.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Silver RI, Wiley EL, Thigpen AE, Guileyardo JM, McConnell JD, Russell DW. Cell type specific expression of steroid 5 alpha-reductase 2. J Urol. 1994;152(2 Pt 1):438–42.PubMedCrossRefGoogle Scholar
  39. 39.
    Bartsch G, Muller HR, Oberholzer M, Rohr HP. Light microscopic stereological analysis of the normal human prostate and of benign prostatic hyperplasia. J Urol. 1979;122(4):487–91.PubMedCrossRefGoogle Scholar
  40. 40.
    Roehrborn CG. Pathology of benign prostatic hyperplasia. Int J Impot Res. 2008;20(Suppl 3):S11–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Adorini L, Penna G, Fibbi B, Maggi M. Vitamin D receptor agonists target static, dynamic, and inflammatory components of benign prostatic hyperplasia. Ann N Y Acad Sci. 2010;1193:146–52.PubMedCrossRefGoogle Scholar
  42. 42.
    McNeal J. Pathology of benign prostatic hyperplasia. Insight into etiology. Urol Clin North Am. 1990;17(3):477–86.PubMedGoogle Scholar
  43. 43.
    Shapiro E, Hartanto V, Lepor H. Quantifying the smooth muscle content of the prostate using double-immunoenzymatic staining and color assisted image analysis. J Urol. 1992;147(4):1167–70.PubMedCrossRefGoogle Scholar
  44. 44.
    Shapiro E, Hartanto V, Lepor H. The response to alpha blockade in benign prostatic hyperplasia is related to the percent area density of prostate smooth muscle. Prostate. 1992;21(4):297–307.PubMedCrossRefGoogle Scholar
  45. 45.
    Berry SJ, Strandberg JD, Saunders WJ, Coffey DS. Development of canine benign prostatic hyperplasia with age. Prostate. 1986;9(4):363–73.PubMedCrossRefGoogle Scholar
  46. 46.
    Ehrlich Y, Foster RS, Bihrle R, Cheng L, Tong Y, Koch MO. Division of prostatic anterior fibromuscular stroma reduces urethral resistance in an ex vivo human prostate model. Urology. 2010;76(2):511.e10–3.CrossRefGoogle Scholar
  47. 47.
    Barry MJ, Cockett AT, Holtgrewe HL, McConnell JD, Sihelnik SA, Winfield HN. Relationship of symptoms of prostatism to commonly used physiological and anatomical measures of the severity of benign prostatic hyperplasia. J Urol. 1993;150(2 Pt 1):351–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Cunha GR, Chung LW, Shannon JM, Taguchi O, Fujii H. Hormone-induced morphogenesis and growth: role of mesenchymal-epithelial interactions. Recent Prog Horm Res. 1983;39:559–98.PubMedGoogle Scholar
  49. 49.
    Isaacs JT. Prostate stem cells and benign prostatic hyperplasia. Prostate. 2008;68(9):1025–34.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kramer G, Mitteregger D, Marberger M. Is benign prostatic hyperplasia (BPH) an immune inflammatory disease? Eur Urol. 2007;51(5):1202–16.PubMedCrossRefGoogle Scholar
  51. 51.
    Kondo S, Tashima Y, Morita T. Quantitative analysis of adrenergic alpha-1 and alpha-2 receptors in human prostatic urethral tissue. Br J Urol. 1993;72(1):68–73.PubMedCrossRefGoogle Scholar
  52. 52.
    Yamada S, Ashizawa N, Ushijima H, Nakayama K, Hayashi E, Honda K. Alpha-1 adrenoceptors in human prostate: characterization and alteration in benign prostatic hypertrophy. J Pharmacol Exp Ther. 1987;242(1):326–30.PubMedGoogle Scholar
  53. 53.
    Nasu K, Moriyama N, Kawabe K, Tsujimoto G, Murai M, Tanaka T, et al. Quantification and distribution of alpha 1-adrenoceptor subtype mRNAs in human prostate: comparison of benign hypertrophied tissue and non-hypertrophied tissue. Br J Pharmacol. 1996;119(5):797–803.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Klotz T, Mathers MJ, Bloch W, Nayal W, Engelmann U. Nitric oxide based influence of nitrates on micturition in patients with benign prostatic hyperplasia. Int Urol Nephrol. 1999;31(3):335–41.PubMedCrossRefGoogle Scholar
  55. 55.
    Chapple CR, Crowe R, Gilpin SA, Gosling J, Burnstock G. The innervation of the human prostate gland--the changes associated with benign enlargement. J Urol. 1991;146(6):1637–44.PubMedCrossRefGoogle Scholar
  56. 56.
    Caine M, Raz S, Zeigler M. Adrenergic and cholinergic receptors in the human prostate, prostatic capsule and bladder neck. Br J Urol. 1975;47(2):193–202.PubMedCrossRefGoogle Scholar
  57. 57.
    Vaalasti A, Hervonen A. Nerve endings in the human prostate. Am J Anat. 1980;157(1):41–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Higgins JR, Gosling JA. Studies on the structure and intrinsic innervation of the normal human prostate. Prostate Suppl. 1989;2:5–16.PubMedCrossRefGoogle Scholar
  59. 59.
    Ichihara I, Kallio M, Pelliniemi LJ. Light and electron microscopy of the ducts and their subepithelial tissue in the rat ventral prostate. Cell Tissue Res. 1978;192(3):381–90.PubMedCrossRefGoogle Scholar
  60. 60.
    Pennefather JN, Lau WA, Mitchelson F, Ventura S. The autonomic and sensory innervation of the smooth muscle of the prostate gland: a review of pharmacological and histological studies. J Auton Pharmacol. 2000;20(4):193–206.PubMedCrossRefGoogle Scholar
  61. 61.
    Christ GJ, Andersson KE. Rho-kinase and effects of Rho-kinase inhibition on the lower urinary tract. Neurourol Urodyn. 2007;26(6 Suppl):948–54.PubMedCrossRefGoogle Scholar
  62. 62.
    Chapple CR, Aubry ML, James S, Greengrass PM, Burnstock G, Turner-Warwick RT, et al. Characterisation of human prostatic adrenoceptors using pharmacology receptor binding and localisation. Br J Urol. 1989;63(5):487–96.PubMedCrossRefGoogle Scholar
  63. 63.
    James S, Chapple CR, Phillips MI, Greengrass PM, Davey MJ, Turner-Warwick RT, et al. Autoradiographic analysis of alpha-adrenoceptors and muscarinic cholinergic receptors in the hyperplastic human prostate. J Urol. 1989;142(2 Pt 1):438–44.PubMedCrossRefGoogle Scholar
  64. 64.
    Hieble JP, Caine M, Zalaznik E. In vitro characterization of the alpha-adrenoceptors in human prostate. Eur J Pharmacol. 1985;107(2):111–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Hedlund H, Andersson KE, Larsson B. Alpha-adrenoceptors and muscarinic receptors in the isolated human prostate. J Urol. 1985;134(6):1291–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Tsujii T, Azuma H, Yamaguchi T, Oshima H. A possible role of decreased relaxation mediated by beta-adrenoceptors in bladder outlet obstruction by benign prostatic hyperplasia. Br J Pharmacol. 1992;107(3):803–7.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Drescher P, Eckert RE, Madsen PO. Smooth muscle contractility in prostatic hyperplasia: role of cyclic adenosine monophosphate. Prostate. 1994;25(2):76–80.PubMedCrossRefGoogle Scholar
  68. 68.
    Haynes JM. beta(2) and beta(3)-adrenoceptor inhibition of alpha(1)-adrenoceptor-stimulated Ca(2+) elevation in human cultured prostatic stromal cells. Eur J Pharmacol. 2007;570(1–3):18–26.PubMedCrossRefGoogle Scholar
  69. 69.
    Goepel M, Wittmann A, Rubben H, Michel MC. Comparison of adrenoceptor subtype expression in porcine and human bladder and prostate. Urol Res. 1997;25(3):199–206.PubMedCrossRefGoogle Scholar
  70. 70.
    Calmasini FB, Candido TZ, Alexandre EC, D’Ancona CA, Silva D, de Oliveira MA, et al. The beta-3 adrenoceptor agonist, mirabegron relaxes isolated prostate from human and rabbit: new therapeutic indication? Prostate. 2015;75(4):440–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Kyprianou N, Benning CM. Suppression of human prostate cancer cell growth by alpha1-adrenoceptor antagonists doxazosin and terazosin via induction of apoptosis. Cancer Res. 2000;60(16):4550–5.PubMedGoogle Scholar
  72. 72.
    Garrison JB, Kyprianou N. Doxazosin induces apoptosis of benign and malignant prostate cells via a death receptor-mediated pathway. Cancer Res. 2006;66(1):464–72.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Liou SF, Lin HH, Liang JC, Chen IJ, Yeh JL. Inhibition of human prostate cancer cells proliferation by a selective alpha1-adrenoceptor antagonist labedipinedilol-A involves cell cycle arrest and apoptosis. Toxicology. 2009;256(1–2):13–24.PubMedCrossRefGoogle Scholar
  74. 74.
    Hori Y, Ishii K, Kanda H, Iwamoto Y, Nishikawa K, Soga N, et al. Naftopidil, a selective {alpha}1-adrenoceptor antagonist, suppresses human prostate tumor growth by altering interactions between tumor cells and stroma. Cancer Prev Res (Phila). 2011;4(1):87–96.CrossRefGoogle Scholar
  75. 75.
    Kanagawa K, Sugimura K, Kuratsukuri K, Ikemoto S, Kishimoto T, Nakatani T. Norepinephrine activates P44 and P42 MAPK in human prostate stromal and smooth muscle cells but not in epithelial cells. Prostate. 2003;56(4):313–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Bauer RM, Strittmatter F, Gratzke C, Gottinger J, Schlenker B, Reich O, et al. Coupling of alpha1-adrenoceptors to ERK1/2 in the human prostate. Urol Int. 2011;86(4):427–33.PubMedCrossRefGoogle Scholar
  77. 77.
    Strittmatter F, Walther S, Roosen A, Rutz B, Schlenker B, Limmer S, et al. Activation of protein kinase B/Akt by alpha1-adrenoceptors in the human prostate. Life Sci. 2012;90(11–12):446–53.PubMedCrossRefGoogle Scholar
  78. 78.
    Strittmatter F, Gratzke C, Walther S, Gottinger J, Beckmann C, Roosen A, et al. Alpha1-adrenoceptor signaling in the human prostate involves regulation of p38 mitogen-activated protein kinase. Urology. 2011;78(4):969.e7–13.CrossRefGoogle Scholar
  79. 79.
    Roehrborn CG. Three months’ treatment with the alpha1-blocker alfuzosin does not affect total or transition zone volume of the prostate. Prostate Cancer Prostatic Dis. 2006;9(2):121–5.PubMedCrossRefGoogle Scholar
  80. 80.
    Andersson KE, Gratzke C. Pharmacology of alpha1-adrenoceptor antagonists in the lower urinary tract and central nervous system. Nat Clin Pract Urol. 2007;4(7):368–78.PubMedCrossRefGoogle Scholar
  81. 81.
    Burnstock G. Purinergic signalling in the reproductive system in health and disease. Purinergic Signal. 2014;10(1):157–87.PubMedCrossRefGoogle Scholar
  82. 82.
    Janssens R, Communi D, Pirotton S, Samson M, Parmentier M, Boeynaems JM. Cloning and tissue distribution of the human P2Y1 receptor. Biochem Biophys Res Commun. 1996;221(3):588–93.PubMedCrossRefGoogle Scholar
  83. 83.
    Preston A, Frydenberg M, Haynes JM. A1 and A2A adenosine receptor modulation of alpha 1-adrenoceptor-mediated contractility in human cultured prostatic stromal cells. Br J Pharmacol. 2004;141(2):302–10.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Lam M, Mitsui R, Hashitani H. Electrical properties of purinergic transmission in smooth muscle of the guinea-pig prostate. Auton Neurosci. 2016;194:8–16.PubMedCrossRefGoogle Scholar
  85. 85.
    Dunzendorfer U, Jonas D, Weber W. The autonomic innervation of the human prostate. Histochemistry of acetylcholinesterase in the normal and pathologic states. Urol Res. 1976;4(1):29–31.PubMedCrossRefGoogle Scholar
  86. 86.
    Hedlund P, Ekstrom P, Larsson B, Alm P, Andersson KE. Heme oxygenase and NO-synthase in the human prostate—relation to adrenergic, cholinergic and peptide-containing nerves. J Auton Nerv Syst. 1997;63(3):115–26.PubMedCrossRefGoogle Scholar
  87. 87.
    Vaalasti A, Hervonen A. Autonomic innervation of the human prostate. Investig Urol. 1980;17(4):293–7.Google Scholar
  88. 88.
    Witte LP, Chapple CR, de la Rosette JJ, Michel MC. Cholinergic innervation and muscarinic receptors in the human prostate. Eur Urol. 2008;54(2):326–34.PubMedCrossRefGoogle Scholar
  89. 89.
    Seki N, Suzuki H. Electrical and mechanical activity of rabbit prostate smooth muscles in response to nerve stimulation. J Physiol. 1989;419:651–63.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Lau WA, Ventura S, Pennefather JN. Pharmacology of neurotransmission to the smooth muscle of the rat and the guinea-pig prostate glands. J Auton Pharmacol. 1998;18(6):349–56.PubMedCrossRefGoogle Scholar
  91. 91.
    Lau WA, Pennefather JN, Mitchelson FJ. Cholinergic facilitation of neurotransmission to the smooth muscle of the guinea-pig prostate gland. Br J Pharmacol. 2000;130(5):1013–20.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Fernandez JL, Rivera L, Lopez PG, Recio P, Vela-Navarrete R, Garcia-Sacristan A. Characterization of the muscarinic receptor mediating contraction of the dog prostate. J Auton Pharmacol. 1998;18(4):205–11.PubMedCrossRefGoogle Scholar
  93. 93.
    White CW, Short JL, Haynes JM, Matsui M, Ventura S. Contractions of the mouse prostate elicited by acetylcholine are mediated by M(3) muscarinic receptors. J Pharmacol Exp Ther. 2011;339(3):870–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Bloch W, Klotz T, Loch C, Schmidt G, Engelmann U, Addicks K. Distribution of nitric oxide synthase implies a regulation of circulation, smooth muscle tone, and secretory function in the human prostate by nitric oxide. Prostate. 1997;33(1):1–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Burnett AL, Maguire MP, Chamness SL, Ricker DD, Takeda M, Lepor H, et al. Characterization and localization of nitric oxide synthase in the human prostate. Urology. 1995;45(3):435–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Gradini R, Realacci M, Ginepri A, Naso G, Santangelo C, Cela O, et al. Nitric oxide synthases in normal and benign hyperplastic human prostate: immunohistochemistry and molecular biology. J Pathol. 1999;189(2):224–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Takeda M, Tang R, Shapiro E, Burnett AL, Lepor H. Effects of nitric oxide on human and canine prostates. Urology. 1995;45(3):440–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Haynes JM, Cook AL. Protein kinase G-induced activation of K(ATP) channels reduces contractility of human prostate tissue. Prostate. 2006;66(4):377–85.PubMedCrossRefGoogle Scholar
  99. 99.
    Denninger JW, Marletta MA. Guanylate cyclase and the.NO/cGMP signaling pathway. Biochim Biophys Acta. 1999;1411(2–3):334–50.PubMedCrossRefGoogle Scholar
  100. 100.
    Collins SP, Uhler MD. Cyclic AMP- and cyclic GMP-dependent protein kinases differ in their regulation of cyclic AMP response element-dependent gene transcription. J Biol Chem. 1999;274(13):8391–404.PubMedCrossRefGoogle Scholar
  101. 101.
    Watts SW, Cohen ML. Effect of bombesin, bradykinin, substance P and CGRP in prostate, bladder body and neck. Peptides. 1991;12(5):1057–62.PubMedCrossRefGoogle Scholar
  102. 102.
    Palea S, Corsi M, Artibani W, Ostardo E, Pietra C. Pharmacological characterization of tachykinin NK2 receptors on isolated human urinary bladder, prostatic urethra and prostate. J Pharmacol Exp Ther. 1996;277(2):700–5.PubMedGoogle Scholar
  103. 103.
    Langenstroer P, Tang R, Shapiro E, Divish B, Opgenorth T, Lepor H. Endothelin-1 in the human prostate: tissue levels, source of production and isometric tension studies. J Urol. 1993;150(2 Pt 1):495–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Kedia GT, Uckert S, Kedia M, Kuczyk MA. Effects of phosphodiesterase inhibitors on contraction induced by endothelin-1 of isolated human prostatic tissue. Urology. 2009;73(6):1397–401.PubMedCrossRefGoogle Scholar
  105. 105.
    Gratzke C, Weinhold P, Reich O, Seitz M, Schlenker B, Stief CG, et al. Transient receptor potential A1 and cannabinoid receptor activity in human normal and hyperplastic prostate: relation to nerves and interstitial cells. Eur Urol. 2010;57(5):902–10.PubMedCrossRefGoogle Scholar
  106. 106.
    Kitada S, Kumazawa J. Pharmacological characteristics of smooth muscle in benign prostatic hyperplasia and normal prostatic tissue. J Urol. 1987;138(1):158–60.PubMedCrossRefGoogle Scholar
  107. 107.
    Strittmatter F, Gratzke C, Weinhold P, Steib CJ, Hartmann AC, Schlenker B, et al. Thromboxane A2 induces contraction of human prostate smooth muscle by Rho kinase- and calmodulin-dependent mechanisms. Eur J Pharmacol. 2011;650(2–3):650–5.PubMedCrossRefGoogle Scholar
  108. 108.
    Walden PD, Lefkowitz GK, Ittmann M, Lepor H, Monaco ME. Mitogenic activation of human prostate-derived fibromuscular stromal cells by bradykinin. Br J Pharmacol. 1999;127(1):220–6.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Srinivasan D, Kosaka AH, Daniels DV, Ford AP, Bhattacharya A. Pharmacological and functional characterization of bradykinin B2 receptor in human prostate. Eur J Pharmacol. 2004;504(3):155–67.PubMedCrossRefGoogle Scholar
  110. 110.
    Kester RR, Mooppan UM, Gousse AE, Alver JE, Gintautas J, Gulmi FA, et al. Pharmacological characterization of isolated human prostate. J Urol. 2003;170(3):1032–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Exintaris B, Klemm MF, Lang RJ. Spontaneous slow wave and contractile activity of the Guinea pig prostate. J Urol. 2002;168(1):315–22.PubMedCrossRefGoogle Scholar
  112. 112.
    Van der Aa F, Roskams T, Blyweert W, De Ridder D. Interstitial cells in the human prostate: a new therapeutic target? Prostate. 2003;56(4):250–5.PubMedCrossRefGoogle Scholar
  113. 113.
    Kusljic S, Exintaris B. The effect of estrogen supplementation on cell proliferation and expression of c-kit positive cells in the rat prostate. Prostate. 2010;70(14):1555–62.PubMedCrossRefGoogle Scholar
  114. 114.
    Boesch ST, Dobler G, Ramoner R, Corvin S, Thurnher M, Bartsch G, et al. Effects of alpha1-adrenoceptor antagonists on cultured prostatic smooth muscle cells. Prostate Suppl. 2000;9:34–41.PubMedCrossRefGoogle Scholar
  115. 115.
    Scarano WR, Cordeiro RS, Goes RM, Carvalho HF, Taboga SR. Tissue remodeling in Guinea pig lateral prostate at different ages after estradiol treatment. Cell Biol Int. 2005;29(9):778–84.PubMedCrossRefGoogle Scholar
  116. 116.
    Cordeiro RS, Scarano WR, Goes RM, Taboga SR. Tissue alterations in the guinea pig lateral prostate following antiandrogen flutamide therapy. Biocell. 2004;28(1):21–30.PubMedGoogle Scholar
  117. 117.
    Horsfall DJ, Mayne K, Ricciardelli C, Rao M, Skinner JM, Henderson DW, et al. Age-related changes in guinea pig prostatic stroma. Lab Investig. 1994;70(5):753–63.PubMedGoogle Scholar
  118. 118.
    Shapiro E, Becich MJ, Hartanto V, Lepor H. The relative proportion of stromal and epithelial hyperplasia is related to the development of symptomatic benign prostate hyperplasia. J Urol. 1992;147(5):1293–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Crowcroft PJ, Szurszewski JH. A study of the inferior mesenteric and pelvic ganglia of Guinea-pigs with intracellular electrodes. J Physiol. 1971;219(2):421–41.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Yokota R, Burnstock G. Decentralisation of neurones in the pelvic ganglion of the guinea-pig: reinnervation by adrenergic nerves. Cell Tissue Res. 1983;232(2):399–411.PubMedCrossRefGoogle Scholar
  121. 121.
    Ventura S, Lau WA, Buljubasich S, Pennefather JN. Calcitonin gene-related peptide (CGRP) inhibits contractions of the prostatic stroma of the rat but not the guinea-pig. Regul Pept. 2000;91(1–3):63–73.PubMedCrossRefGoogle Scholar
  122. 122.
    Pennefather JN, Lau WA, Chin C, Story ME, Ventura S. alpha(1L)-adrenoceptors mediate noradrenaline-induced contractions of the guinea-pig prostate stroma. Eur J Pharmacol. 1999;384(1):25–30.PubMedCrossRefGoogle Scholar
  123. 123.
    Najbar-Kaszkiel AT, Di Iulio JL, Li CG, Rand MJ. Characterisation of excitatory and inhibitory transmitter systems in prostate glands of rats, guinea pigs, rabbits and pigs. Eur J Pharmacol. 1997;337(2–3):251–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Lang RJ, Hashitani H. Role of prostatic interstitial cells in prostate motility. J Smooth Muscle Res. 2017;53(0):57–72.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Corradi LS, Jesus MM, Fochi RA, Vilamaior PS, Justulin LA Jr, Goes RM, et al. Structural and ultrastructural evidence for telocytes in prostate stroma. J Cell Mol Med. 2013;17(3):398–406.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Kusljic S, Dey A, Nguyen DTT, Lang RJ, Exintaris B. Prostatic interstitial cells in ageing guinea pig prostates. Curr Urol. 2007;1(3):141–4.CrossRefGoogle Scholar
  127. 127.
    Leong KG, Wang BE, Johnson L, Gao WQ. Generation of a prostate from a single adult stem cell. Nature. 2008;456(7223):804–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Lammie A, Drobnjak M, Gerald W, Saad A, Cote R, Cordon-Cardo C. Expression of c-kit and kit ligand proteins in normal human tissues. J Histochem Cytochem. 1994;42(11):1417–25.PubMedCrossRefGoogle Scholar
  129. 129.
    Gevaert T, Lerut E, Joniau S, Franken J, Roskams T, De Ridder D. Characterization of subepithelial interstitial cells in normal and pathological human prostate. Histopathology. 2014;65(3):418–28.PubMedCrossRefGoogle Scholar
  130. 130.
    Lang RJ, Nguyen DT, Matsuyama H, Takewaki T, Exintaris B. Characterization of spontaneous depolarizations in smooth muscle cells of the Guinea pig prostate. J Urol. 2006;175(1):370–80.PubMedCrossRefGoogle Scholar
  131. 131.
    Shigemasa Y, Lam M, Mitsui R, Hashitani H. Voltage dependence of slow wave frequency in the guinea pig prostate. J Urol. 2014;192(4):1286–92.PubMedCrossRefGoogle Scholar
  132. 132.
    Oh SJ, Kim KM, Chung YS, Hong EK, Shin SY, Kim SJ. Ion-channel currents of smooth muscle cells isolated from the prostate of guinea-pig. BJU Int. 2003;92(9):1022–30.PubMedCrossRefGoogle Scholar
  133. 133.
    Lang RJ, Mulholland E, Exintaris B. Characterization of the ion channel currents in single myocytes of the guinea pig prostate. J Urol. 2004;172(3):1179–87.PubMedCrossRefGoogle Scholar
  134. 134.
    Eckert RE, Schreier U, Drescher P, Madsen PO, Derouet H, Becht E, et al. Regulation of prostatic smooth muscle contractility by intracellular second messengers: implications for the conservative treatment of benign prostatic hyperplasia. Urol Int. 1995;54(1):6–21.PubMedCrossRefGoogle Scholar
  135. 135.
    Sui GP, Wu C, Fry CH. Ca2+ currents in smooth muscle cells isolated from human prostate. Prostate. 2004;59(3):275–81.PubMedCrossRefGoogle Scholar
  136. 136.
    Dey A, Nguyen DT, Lang RJ, Exintaris B. Spontaneous electrical waveforms in aging guinea pig prostates. J Urol. 2009;181(6):2797–805.PubMedCrossRefGoogle Scholar
  137. 137.
    Exintaris B, Nguyen DT, Dey A, Lang RJ. Spontaneous electrical activity in the prostate gland. Auton Neurosci. 2006;126-127:371–9.PubMedCrossRefGoogle Scholar
  138. 138.
    Lang RJ, Tonta MA, Takano H, Hashitani H. Voltage-operated Ca(2) (+) currents and Ca(2) (+) -activated Cl(−) currents in single interstitial cells of the guinea-pig prostate. BJU Int. 2014;114(3):436–46.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Dey A, Kusljic S, Lang RJ, Exintaris B. Role of connexin 43 in the maintenance of spontaneous activity in the guinea pig prostate gland. Br J Pharmacol. 2010;161(8):1692–707.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Lam M, Kerr KP, Exintaris B. Involvement of Rho-kinase signaling pathways in nerve evoked and spontaneous contractions of the Guinea pig prostate. J Urol. 2013;189(3):1147–54.PubMedCrossRefGoogle Scholar
  141. 141.
    Lee SN, Chakrabarty B, Wittmer B, Papargiris M, Ryan A, Frydenberg M, et al. Age related differences in responsiveness to sildenafil and tamsulosin are due to myogenic smooth muscle tone in the human prostate. Sci Rep. 2017;7(1):10150.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Powell MS, Li R, Dai H, Sayeeduddin M, Wheeler TM, Ayala GE. Neuroanatomy of the normal prostate. Prostate. 2005;65(1):52–7.PubMedCrossRefGoogle Scholar
  143. 143.
    Nguyen DT, Dey A, Lang RJ, Ventura S, Exintaris B. Contractility and pacemaker cells in the prostate gland. J Urol. 2011;185(1):347–51.PubMedCrossRefGoogle Scholar
  144. 144.
    Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature. 1994;372(6503):231–6.PubMedCrossRefGoogle Scholar
  145. 145.
    Villa A, Podini P, Panzeri MC, Soling HD, Volpe P, Meldolesi J. The endoplasmic-sarcoplasmic reticulum of smooth muscle: immunocytochemistry of vas deferens fibers reveals specialized subcompartments differently equipped for the control of Ca2+ homeostasis. J Cell Biol. 1993;121(5):1041–51.PubMedCrossRefGoogle Scholar
  146. 146.
    Herrmann-Frank A, Darling E, Meissner G. Functional characterization of the Ca(2+)-gated Ca2+ release channel of vascular smooth muscle sarcoplasmic reticulum. Pflugers Arch. 1991;418(4):353–9.PubMedCrossRefGoogle Scholar
  147. 147.
    Exintaris B, Nguyen DT, Lam M, Lang RJ. Inositol trisphosphate-dependent Ca stores and mitochondria modulate slow wave activity arising from the smooth muscle cells of the Guinea pig prostate gland. Br J Pharmacol. 2009;156(7):1098–106.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Lam M, Shigemasa Y, Exintaris B, Lang RJ, Hashitani H. Spontaneous Ca2+ signaling of interstitial cells in the guinea pig prostate. J Urol. 2011;186(6):2478–86.PubMedCrossRefGoogle Scholar
  149. 149.
    Johnston L, Carson C, Lyons AD, Davidson RA, McCloskey KD. Cholinergic-induced Ca2+ signaling in interstitial cells of Cajal from the guinea pig bladder. Am J Physiol Ren Physiol. 2008;294(3):F645–55.CrossRefGoogle Scholar
  150. 150.
    Sergeant GP, Hollywood MA, McCloskey KD, McHale NG, Thornbury KD. Role of IP(3) in modulation of spontaneous activity in pacemaker cells of rabbit urethra. Am J Phys Cell Phys. 2001;280(5):C1349–56.CrossRefGoogle Scholar
  151. 151.
    Nguyen DT, Lang RJ, Exintaris B. alpha(1)-adrenoceptor modulation of spontaneous electrical waveforms in the guinea-pig prostate. Eur J Pharmacol. 2009;608(1–3):62–70.PubMedCrossRefGoogle Scholar
  152. 152.
    Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science. 2008;322(5901):590–4.PubMedCrossRefGoogle Scholar
  153. 153.
    Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 2008;455(7217):1210–5.PubMedCrossRefGoogle Scholar
  154. 154.
    Zhu MH, Kim TW, Ro S, Yan W, Ward SM, Koh SD, et al. A Ca(2+)-activated Cl(−) conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J Physiol. 2009;587(Pt 20):4905–18.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Gomez-Pinilla PJ, Gibbons SJ, Bardsley MR, Lorincz A, Pozo MJ, Pasricha PJ, et al. Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol. 2009;296(6):G1370–81.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Hwang SJ, Blair PJ, Britton FC, O’Driscoll KE, Hennig G, Bayguinov YR, et al. Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol. 2009;587(Pt 20):4887–904.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Liu W, Lu M, Liu B, Huang Y, Wang K. Inhibition of Ca(2+)-activated Cl(−) channel ANO1/TMEM16A expression suppresses tumor growth and invasiveness in human prostate carcinoma. Cancer Lett. 2012;326(1):41–51.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Oelke M, Bachmann A, Descazeaud A, Emberton M, Gravas S, Michel MC, et al. EAU guidelines on the treatment and follow-up of non-neurogenic male lower urinary tract symptoms including benign prostatic obstruction. Eur Urol. 2013;64(1):118–40.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    McVary KT, Roehrborn CG, Avins AL, Barry MJ, Bruskewitz RC, Donnell RF, et al. Update on AUA guideline on the management of benign prostatic hyperplasia. J Urol. 2011;185(5):1793–803.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Rossi S, editor. Australian medicines handbook 2014. Adelaide: Australian Medicines Handbook Pty Ltd; 2014.Google Scholar
  161. 161.
    Roehrborn CG. Male lower urinary tract symptoms (LUTS) and benign prostatic hyperplasia (BPH). Med Clin North Am. 2011;95(1):87–100.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Raz S, Zeigler M, Caine M. Pharmacological receptors in the prostate. Br J Urol. 1973;45(6):663–7.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Chakrabarty B, Dey A, Lam M, Ventura S, Exintaris B. Tamsulosin modulates, but does not abolish the spontaneous activity in the guinea pig prostate gland. Neurourol Urodyn. 2015;34(5):482–8.PubMedCrossRefGoogle Scholar
  164. 164.
    Lepor H, Gup DI, Baumann M, Shapiro E. Comparison of alpha 1 adrenoceptors in the prostate capsule of men with symptomatic and asymptomatic benign prostatic hyperplasia. Br J Urol. 1991;67(5):493–8.PubMedCrossRefGoogle Scholar
  165. 165.
    Kojima Y, Sasaki S, Shinoura H, Hayashi Y, Tsujimoto G, Kohri K. Quantification of alpha1-adrenoceptor subtypes by real-time RT-PCR and correlation with age and prostate volume in benign prostatic hyperplasia patients. Prostate. 2006;66(7):761–7.PubMedCrossRefGoogle Scholar
  166. 166.
    Oelke M, Giuliano F, Mirone V, Xu L, Cox D, Viktrup L. Monotherapy with tadalafil or tamsulosin similarly improved lower urinary tract symptoms suggestive of benign prostatic hyperplasia in an international, randomised, parallel, placebo-controlled clinical trial. Eur Urol. 2012;61(5):917–25.PubMedCrossRefGoogle Scholar
  167. 167.
    Chang DF, Campbell JR. Intraoperative floppy iris syndrome associated with tamsulosin. J Cataract Refract Surg. 2005;31(4):664–73.PubMedCrossRefGoogle Scholar
  168. 168.
    van Dijk MM, de la Rosette JJ, Michel MC. Effects of alpha(1)-adrenoceptor antagonists on male sexual function. Drugs. 2006;66(3):287–301.PubMedCrossRefGoogle Scholar
  169. 169.
    Barendrecht MM, Koopmans RP, de la Rosette JJ, Michel MC. Treatment of lower urinary tract symptoms suggestive of benign prostatic hyperplasia: the cardiovascular system. BJU Int. 2005;95(Suppl 4):19–28.PubMedCrossRefGoogle Scholar
  170. 170.
    McConnell JD, Roehrborn CG, Bautista OM, Andriole GL Jr, Dixon CM, Kusek JW, et al. The long-term effect of doxazosin, finasteride, and combination therapy on the clinical progression of benign prostatic hyperplasia. N Engl J Med. 2003;349(25):2387–98.PubMedCrossRefGoogle Scholar
  171. 171.
    Roehrborn CG, Siami P, Barkin J, Damiao R, Major-Walker K, Nandy I, et al. The effects of combination therapy with dutasteride and tamsulosin on clinical outcomes in men with symptomatic benign prostatic hyperplasia: 4-year results from the CombAT study. Eur Urol. 2010;57(1):123–31.PubMedCrossRefGoogle Scholar
  172. 172.
    Gacci M, Corona G, Salvi M, Vignozzi L, McVary KT, Kaplan SA, et al. A systematic review and meta-analysis on the use of phosphodiesterase 5 inhibitors alone or in combination with alpha-blockers for lower urinary tract symptoms due to benign prostatic hyperplasia. Eur Urol. 2012;61(5):994–1003.PubMedCrossRefGoogle Scholar
  173. 173.
    Dey A, Lang RJ, Exintaris B. Nitric oxide signaling pathways involved in the inhibition of spontaneous activity in the guinea pig prostate. J Urol. 2012;187(6):2254–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Drug Discovery BiologyMonash Institute of Pharmaceutical ScienceMelbourneAustralia

Personalised recommendations