Advertisement

Myosalpinx Contractions Are Essential for Egg Transport Along the Oviduct and Are Disrupted in Reproductive Tract Diseases

  • Rose E. Dixon
  • Sung Jin Hwang
  • Bo Hyun Kim
  • Kenton M. Sanders
  • Sean M. WardEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1124)

Abstract

Oviducts (also called fallopian tubes) are smooth muscle-lined tubular organs that at one end extend in a trumpet bell-like fashion to surround the ovary, and at the other connect to the uterus. Contractions of the oviduct smooth muscle (myosalpinx) and the wafting motion of the ciliated epithelium that lines these tubes facilitate bidirectional transport of gametes so that newly released ovum(s) are transported in one direction (pro-uterus) while spermatozoa are transported in the opposite direction (pro-ovary). These transport processes must be temporally coordinated so that the ovum and spermatozoa meet in the ampulla, the site of fertilization. Once fertilized, the early embryo begins another precisely timed journey towards the uterus for implantation. Myosalpinx contractions facilitate this journey too, while luminal secretions from secretory epithelial cells aid early embryo maturation.

The previous paradigm was that oviduct transport processes were primarily controlled by fluid currents generated by the incessant beat of the ciliated epithelium towards the uterus. More recently, video imaging and spatiotemporal mapping have suggested a novel paradigm in which ovum/embryo transport is highly dependent upon phasic and propulsive contractions of the myosalpinx. A specialized population of pacemaker cells, termed oviduct interstitial cells of Cajal (ICC-OVI), generate the electrical activity that drives these contractions. The ionic mechanisms underlying this pacemaker activity are dependent upon the calcium-activated chloride conductance, Ano1.

This chapter discusses the basis of oviduct pacemaker activity, its hormonal regulation, and the underlying mechanisms and repercussions when this activity becomes disrupted during inflammatory responses to bacterial infections, such as Chlamydia.

Keywords

Oviduct Myosalpinx Ovum transport Fertilization Interstitial cells of Cajal Ano1 Chlamydia 

References

  1. 1.
    Cook MJ. The anatomy of the laboratory mouse, vol. 143. London: Academic Press; 1965.Google Scholar
  2. 2.
    Nilsson O, Reinius S. Light and electron microscopic structure of the oviduct. In: Hafez ESE, Blandau RJ, Washington State University, editors. The mammalian oviduct comparative biology and methodology. Chicago, IL: University of Chicago Press; 1969. p. 57–83.Google Scholar
  3. 3.
    Eddy CA, Pauerstein CJ. Anatomy and physiology of the fallopian tube. Clin Obstet Gynecol. 1980;23(4):1177–93.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Blandau RJ. Gamete transport—comparative aspects. In: Hafez ESE, Blandau RJ, Washington State University, editors. The mammalian oviduct comparative biology and methodology. Chicago, IL: University of Chicago Press; 1969. p. 129–62.Google Scholar
  5. 5.
    Paton DM, Widdicombe JH, Rheaume DE, Johns A. The role of the adrenergic innervation of the oviduct in the regulation of mammalian ovum transport. Pharmacol Rev. 1977;29(2):67–102.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Croxatto HB. Physiology of gamete and embryo transport through the fallopian tube. Reprod Biomed Online. 2002;4(2):160–9.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Hafez ESE, Black DL. The mammalian uterotubal junction. In: Hafez ESE, Blandau RJ, Washington State University, editors. The mammalian oviduct comparative biology and methodology. Chicago, IL: University of Chicago Press; 1969. p. 105–6.Google Scholar
  8. 8.
    Foster HL, Small JD, Fox JG. The mouse in biomedical research, American College of Laboratory Animal Medicine series, vol. 4. New York: Academic Press; 1981.Google Scholar
  9. 9.
    Ezzati M, Djahanbakhch O, Arian S, Carr BR. Tubal transport of gametes and embryos: a review of physiology and pathophysiology. J Assist Reprod Genet. 2014;31(10):1337–47.  https://doi.org/10.1007/s10815-014-0309-x.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Faussone-Pellegrini MS, Bani G. The muscle coat morphology of the mouse oviduct during the estrous cycle. Arch Histol Cytol. 1990;53(2):167–78.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Abe H. The mammalian oviductal epithelium: regional variations in cytological and functional aspects of the oviductal secretory cells. Histol Histopathol. 1996;11(3):743–68.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Lyons RA, Saridogan E, Djahanbakhch O. The reproductive significance of human Fallopian tube cilia. Hum Reprod Update. 2006;12(4):363–72.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Amso NN, Crow J, Lewin J, Shaw RW. A comparative morphological and ultrastructural study of endometrial gland and fallopian tube epithelia at different stages of the menstrual cycle and the menopause. Hum Reprod. 1994;9(12):2234–41.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Crow J, Amso NN, Lewin J, Shaw RW. Morphology and ultrastructure of fallopian tube epithelium at different stages of the menstrual cycle and menopause. Hum Reprod. 1994;9(12):2224–33.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Dirksen ER, Satir P. Ciliary activity in the mouse oviduct as studied by transmission and scanning electron microscopy. Tissue Cell. 1972;4(3):389–403.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Patek E. The epithelium of the human Fallopian tube. A surface ultrastructural and cytochemical study. Acta Obstet Gynecol Scand Suppl. 1974;31:1–28.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Croxatto HB, Villalon M. Oocyte transport. In: Grudzinskas JG, Yovich J, editors. Gametes the oocyte. Cambridge reviews in human reproduction. Cambridge: Cambridge University Press; 1995. p. 253–76.Google Scholar
  18. 18.
    Leese HJ, Tay JI, Reischl J, Downing SJ. Formation of Fallopian tubal fluid: role of a neglected epithelium. Reproduction. 2001;121(3):339–46.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Paltieli Y, Eibschitz I, Ziskind G, Ohel G, Silbermann M, Weichselbaum A. High progesterone levels and ciliary dysfunction—a possible cause of ectopic pregnancy. J Assist Reprod Genet. 2000;17(2):103–6.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Mahmood T, Saridogan E, Smutna S, Habib AM, Djahanbakhch O. The effect of ovarian steroids on epithelial ciliary beat frequency in the human Fallopian tube. Hum Reprod. 1998;13(11):2991–4.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Nishimura A, Sakuma K, Shimamoto C, Ito S, Nakano T, Daikoku E, Ohmichi M, Ushiroyama T, Ueki M, Kuwabara H, Mori H, Nakahari T. Ciliary beat frequency controlled by oestradiol and progesterone during ovarian cycle in guinea-pig Fallopian tube. Exp Physiol. 2010;95(7):819–28.  https://doi.org/10.1113/expphysiol.2010.052555.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Talbot P, Geiske C, Knoll M. Oocyte pickup by the mammalian oviduct. Mol Biol Cell. 1999;10(1):5–8.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zhuo L, Kimata K. Cumulus oophorus extracellular matrix: its construction and regulation. Cell Struct Funct. 2001;26(4):189–96.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Pauerstein CJ, Eddy CA. The role of the oviduct in reproduction; our knowledge and our ignorance. J Reprod Fertil. 1979;55(1):223–9.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Norwood JT, Hein CE, Halbert SA, Anderson RG. Polycationic macromolecules inhibit cilia-mediated ovum transport in the rabbit oviduct. Proc Natl Acad Sci USA. 1978;75(9):4413–6.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Halbert SA, Becker DR, Szal SE. Ovum transport in the rat oviductal ampulla in the absence of muscle contractility. Biol Reprod. 1989;40(6):1131–6.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Halbert SA, Tam PY, Blandau RJ. Egg transport in the rabbit oviduct: the roles of cilia and muscle. Science. 1976;191(4231):1052–3.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Dixon RE, Hwang SJ, Hennig GW, Ramsey KH, Schripsema JH, Sanders KM, Ward SM. Chlamydia infection causes loss of pacemaker cells and inhibits oocyte transport in the mouse oviduct. Biol Reprod. 2009;80(4):665–73.  https://doi.org/10.1095/biolreprod.108.073833.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Griffin J, Emery BR, Huang I, Peterson CM, Carrell DT. Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human). J Exp Clin Assist Reprod. 2006;3:2.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Fitzharris G, Baltz JM. Granulosa cells regulate intracellular pH of the murine growing oocyte via gap junctions: development of independent homeostasis during oocyte growth. Development. 2006;133(4):591–9.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Hodgson BJ, Talo A, Pauerstein CJ. Oviductal ovum surrogate movement: interrelation with muscular activity. Biol Reprod. 1977;16(3):394–6.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Eddy CA, Flores JJ, Archer DR, Pauerstein CJ. The role of cilia in fertility: an evaluation by selective microsurgical modification of the rabbit oviduct. Am J Obstet Gynecol. 1978;132(7):814–21.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Afzelius BA, Camner P, Mossberg B. On the function of cilia in the female reproductive tract. Fertil Steril. 1978;29(1):72–4.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Raidt J, Werner C, Menchen T, Dougherty GW, Olbrich H, Loges NT, Schmitz R, Pennekamp P, Omran H. Ciliary function and motor protein composition of human fallopian tubes. Hum Reprod. 2015;30(12):2871–80.  https://doi.org/10.1093/humrep/dev227.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Overstreet JW, Cooper GW. Sperm transport in the reproductive tract of the female rabbit: I. The rapid transit phase of transport. Biol Reprod. 1978;19(1):101–14.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Suarez SS, Pacey AA. Sperm transport in the female reproductive tract. Hum Reprod Update. 2006;12(1):23–37.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Suarez SS. Regulation of sperm storage and movement in the mammalian oviduct. Int J Dev Biol. 2008;52(5–6):455–62.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Suarez SS. Sperm transport and motility in the mouse oviduct: observations in situ. Biol Reprod. 1987;36(1):203–10.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Okabe M. Mechanisms of fertilization elucidated by gene-manipulated animals. Asian J Androl. 2015;17(4):646–52.  https://doi.org/10.4103/1008-682X.153299.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Muro Y, Hasuwa H, Isotani A, Miyata H, Yamagata K, Ikawa M, Yanagimachi R, Okabe M. Behavior of mouse spermatozoa in the female reproductive tract from soon after mating to the beginning of fertilization. Biol Reprod. 2016;94(4):80.  https://doi.org/10.1095/biolreprod.115.135368.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Blandau RJ, Gaddum-Rosse P. Mechanism of sperm transport in pig oviducts. Fertil Steril. 1974;25(1):61–7.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Battalia DE, Yanagimachi R. Enhanced and co-ordinated movement of the hamster oviduct during the periovulatory period. J Reprod Fertil. 1979;56(2):515–20.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Chang H, Suarez SS. Unexpected flagellar movement patterns and epithelial binding behavior of mouse sperm in the oviduct. Biol Reprod. 2012;86(5):140, 141–8.  https://doi.org/10.1095/biolreprod.111.096578.CrossRefGoogle Scholar
  44. 44.
    Yanagimachi R, Chang MC. Sperm ascent through the oviduct of the hamster and rabbit in relation to the time of ovulation. J Reprod Fertil. 1963;6:413–20.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Overstreet JW, Cooper GW. Sperm transport in the reproductive tract of the female rabbit: II. The sustained phase of transport. Biol Reprod. 1978;19(1):115–32.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Wilcox AJ, Weinberg CR, Baird DD. Timing of sexual intercourse in relation to ovulation. Effects on the probability of conception, survival of the pregnancy, and sex of the baby. N Engl J Med. 1995;333(23):1517–21.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kervancioglu ME, Djahanbakhch O, Aitken RJ. Epithelial cell coculture and the induction of sperm capacitation. Fertil Steril. 1994;61(6):1103–8.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Rodriguez-Martinez H. Role of the oviduct in sperm capacitation. Theriogenology. 2007;68(Suppl 1):S138–46.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Demott RP, Suarez SS. Hyperactivated sperm progress in the mouse oviduct. Biol Reprod. 1992;46(5):779–85.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Morales P, Palma V, Salgado AM, Villalon M. Sperm interaction with human oviductal cells in vitro. Hum Reprod. 1996;11(7):1504–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Pauerstein CJ. Pathophysiology of the Fallopian tube. Clin Obstet Gynecol. 1974;17(2):89–119.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Killian GJ. Evidence for the role of oviduct secretions in sperm function, fertilization and embryo development. Anim Reprod Sci. 2004;82-83:141–53.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Nishimura T, Nakajima A, Hayashi T. The basic pattern of electrical activities in the rabbit fallopian tube. Acta Obstet Gynaecol Jpn. 1969;16(2):97–103.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Brundin J, Talo A. The effects of estrogen and progesterone on the electric activity and intraluminal pressure of the castrated rabbit oviduct. Biol Reprod. 1972;7(3):417–24.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Talo A. Electric and mechanical activity of the rabbit oviduct in vitro before and after ovulation. Biol Reprod. 1974;11(3):335–45.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Talo A, Brundin J. Muscular activity in the rabbit oviduct: a combination of electric and mechanic recordings. Biol Reprod. 1971;5(1):67–77.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Talo A, Hodgson BJ. Spike bursts in rabbit oviduct. I. Effect of ovulation. Am J Physiol. 1978;234(4):E430–8.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Tomita T, Watanabe H. Factors controlling myogenic activity in smooth muscle. Philos Trans R Soc Lond B Biol Sci. 1973;265(867):73–85.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Dixon RE, Britton FC, Baker SA, Hennig GW, Rollings CM, Sanders KM, Ward SM. Electrical slow waves in the mouse oviduct are dependent on extracellular and intracellular calcium sources. Am J Physiol Cell Physiol. 2011;301(6):C1458–69.  https://doi.org/10.1152/ajpcell.00293.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Dixon RE, Hennig GW, Baker SA, Britton FC, Harfe BD, Rock JR, Sanders KM, Ward SM. Electrical slow waves in the mouse oviduct are dependent upon a calcium activated chloride conductance encoded by Tmem16a. Biol Reprod. 2012;86(1):1–7.  https://doi.org/10.1095/biolreprod.111.095554.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Dixon RE, Ramsey KH, Schripsema JH, Sanders KM, Ward SM. Time-dependent disruption of oviduct pacemaker cells by Chlamydia infection in mice. Biol Reprod. 2010;83(2):244–53.  https://doi.org/10.1095/biolreprod.110.083808.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Johns A, Coons LW. Physiological and pharmacological characteristics of the baboon (Papio anubis) oviduct. Biol Reprod. 1981;25(1):120–7.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Zasztowt O. [Studies on the bioelectrical phenomena of the cell membrane of the muscle of oviducts]. Ginekol Pol. 1969;40(4):371–6.Google Scholar
  64. 64.
    Kishikawa T, Kuriyama H. Electrical and mechanical activities recorded from smooth muscle cells of the human fallopian tube. Jpn J Physiol. 1981;31(3):417–22.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Lindblom B, Wikland M. Simultaneous recording of electrical and mechanical activity in isolated smooth muscle of the human oviduct. Biol Reprod. 1982;27(2):393–8.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Parkington HC. Intracellularly recorded electrical activity of smooth muscle of guinea pig oviduct. Am J Physiol. 1983;245(5 Pt 1):C357–64.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Holman ME. Membrane potentials recorded with high-resistance micro-electrodes; and the effects of changes in ionic environment on the electrical and mechanical activity of the smooth muscle of the taenia coli of the guinea pig. J Physiol. 1958;141(3):464–88.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Talo A, Hodgson BJ. Electrical slow waves in oviductal smooth muscle of the guinea-pig, mouse and the immature baboon. Experientia. 1978;34(2):198–200.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Bayguinov O, Hennig GW, Sanders KM. Movement based artifacts may contaminate extracellular electrical recordings from GI muscles. Neurogastroenterol Motil. 2011;23(11):1029–42, e1498.  https://doi.org/10.1111/j.1365-2982.2011.01784.x.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Ozaki H, Stevens RJ, Blondfield DP, Publicover NG, Sanders KM. Simultaneous measurement of membrane potential, cytosolic Ca2+, and tension in intact smooth muscles. Am J Physiol. 1991;260(5 Pt 1):C917–25.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Forrest AS, Ordog T, Sanders KM. Neural regulation of slow-wave frequency in the murine gastric antrum. Am J Physiol Gastrointest Liver Physiol. 2006;290(3):G486–95.  https://doi.org/10.1152/ajpgi.00349.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Hirst GD, Bramich NJ, Teramoto N, Suzuki H, Edwards FR. Regenerative component of slow waves in the guinea-pig gastric antrum involves a delayed increase in [Ca(2+)](i) and Cl(−) channels. J Physiol. 2002;540(Pt 3):907–19.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Burke EP, Gerthoffer WT, Sanders KM, Publicover NG. Wortmannin inhibits contraction without altering electrical activity in canine gastric smooth muscle. Am J Phys. 1996;270(5 Pt 1):C1405–12.  https://doi.org/10.1152/ajpcell.1996.270.5.C1405.CrossRefGoogle Scholar
  74. 74.
    Sanders KM, Ward SM, Hennig GW. Problems with extracellular recording of electrical activity in gastrointestinal muscle. Nat Rev Gastroenterol Hepatol. 2016;13(12):731–41.  https://doi.org/10.1038/nrgastro.2016.161.CrossRefGoogle Scholar
  75. 75.
    Du P, Calder S, Angeli TR, Sathar S, Paskaranandavadivel N, O’Grady G, Cheng LK. Progress in mathematical modeling of gastrointestinal slow wave abnormalities. Front Physiol. 2017;8:1136.  https://doi.org/10.3389/fphys.2017.01136.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    O’Grady G, Paskaranandavadivel N, Du P, Angeli T, Erickson JC, Cheng LK. Correct techniques for extracellular recordings of electrical activity in gastrointestinal muscle. Nat Rev Gastroenterol Hepatol. 2017;14(6):372.  https://doi.org/10.1038/nrgastro.2017.15.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Sanders KM, Ward SM, Hennig GW. Extracellular gastrointestinal electrical recordings: movement not electrophysiology. Nat Rev Gastroenterol Hepatol. 2017;14(6):372.  https://doi.org/10.1038/nrgastro.2017.39.CrossRefGoogle Scholar
  78. 78.
    Hodgson BJ, Talo A. Spike bursts in rabbit oviduct. II. Effects of estrogen and progesterone. Am J Physiol. 1978;234(4):E439–43.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Popescu LM, Ciontea SM, Cretoiu D, Hinescu ME, Radu E, Ionescu N, Ceausu M, Gherghiceanu M, Braga RI, Vasilescu F, Zagrean L, Ardeleanu C. Novel type of interstitial cell (Cajal-like) in human fallopian tube. J Cell Mol Med. 2005;9(2):479–523.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Shafik A, Shafik AA, El Sibai O, Shafik IA. Specialized pacemaking cells in the human Fallopian tube. Mol Hum Reprod. 2005;11(7):503–5.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Ordog T, Redelman D, Horvath VJ, Miller LJ, Horowitz B, Sanders KM. Quantitative analysis by flow cytometry of interstitial cells of Cajal, pacemakers, and mediators of neurotransmission in the gastrointestinal tract. Cytometry A. 2004;62(2):139–49.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Christensen J. A commentary on the morphological identification of interstitial cells of Cajal in the gut. J Auton Nerv Syst. 1992;37(2):75–88.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Huizinga JD, Thuneberg L, Vanderwinden JM, Rumessen JJ. Interstitial cells of Cajal as targets for pharmacological intervention in gastrointestinal motor disorders. Trends Pharmacol Sci. 1997;18(10):393–403.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology. 1996;111(2):492–515.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Torihashi S, Ward SM, Nishikawa S, Nishi K, Kobayashi S, Sanders KM. c-Kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res. 1995;280(1):97–111.Google Scholar
  86. 86.
    Beckett EA, Ro S, Bayguinov Y, Sanders KM, Ward SM. Kit signaling is essential for development and maintenance of interstitial cells of Cajal and electrical rhythmicity in the embryonic gastrointestinal tract. Dev Dyn. 2007;236(1):60–72.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K, Nishikawa S. Requirement of c-kit for development of intestinal pacemaker system. Development. 1992;116(2):369–75.Google Scholar
  88. 88.
    Sanders KM. Regulation of smooth muscle excitation and contraction. Neurogastroenterol Motil. 2008;20(Suppl 1):39–53.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Hashitani H, van Helden DF, Suzuki H. Properties of spontaneous depolarizations in circular smooth muscle cells of rabbit urethra. Br J Pharmacol. 1996;118(7):1627–32.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kito Y, Fukuta H, Suzuki H. Components of pacemaker potentials recorded from the guinea pig stomach antrum. Pflugers Arch. 2002;445(2):202–17.CrossRefGoogle Scholar
  91. 91.
    von der Weid PY, Rahman M, Imtiaz MS, van Helden DF. Spontaneous transient depolarizations in lymphatic vessels of the guinea pig mesentery: pharmacology and implication for spontaneous contractility. Am J Physiol Heart Circ Physiol. 2008;295(5):H1989–2000.PubMedCrossRefGoogle Scholar
  92. 92.
    Cobine CA, Hannah EE, Zhu MH, Lyle HE, Rock JR, Sanders KM, Ward SM, Keef KD. ANO1 in intramuscular interstitial cells of Cajal plays a key role in the generation of slow waves and tone in the internal anal sphincter. J Physiol. 2017;595(6):2021–41.  https://doi.org/10.1113/JP273618.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Zhu MH, Kim TW, Ro S, Yan W, Ward SM, Koh SD, Sanders KM. A Ca(2+)-activated Cl(−) conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J Physiol. 2009;587(Pt 20):4905–18.  https://doi.org/10.1113/jphysiol.2009.176206.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Huang F, Zhang H, Wu M, Yang H, Kudo M, Peters CJ, Woodruff PG, Solberg OD, Donne ML, Huang X, Sheppard D, Fahy JV, Wolters PJ, Hogan BL, Finkbeiner WE, Li M, Jan YN, Jan LY, Rock JR. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc Natl Acad Sci U S A. 2012;109(40):16354–9.  https://doi.org/10.1073/pnas.1214596109.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Hwang SJ, Blair PJ, Britton FC, O’Driscoll KE, Hennig G, Bayguinov YR, Rock JR, Harfe BD, Sanders KM, Ward SM. Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol. 2009;587(Pt 20):4887–904.  https://doi.org/10.1113/jphysiol.2009.176198.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Hwang SJ, Basma N, Sanders KM, Ward SM. Effects of new-generation inhibitors of the calcium-activated chloride channel anoctamin 1 on slow waves in the gastrointestinal tract. Br J Pharmacol. 2016;173(8):1339–49.  https://doi.org/10.1111/bph.13431.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Sanders KM, Zhu MH, Britton F, Koh SD, Ward SM. Anoctamins and gastrointestinal smooth muscle excitability. Exp Physiol. 2012;97(2):200–6.  https://doi.org/10.1113/expphysiol.2011.058248.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Singh RD, Gibbons SJ, Saravanaperumal SA, Du P, Hennig GW, Eisenman ST, Mazzone A, Hayashi Y, Cao C, Stoltz GJ, Ordog T, Rock JR, Harfe BD, Szurszewski JH, Farrugia G. Ano1, a Ca2+-activated Cl− channel, coordinates contractility in mouse intestine by Ca2+ transient coordination between interstitial cells of Cajal. J Physiol. 2014;592(18):4051–68.  https://doi.org/10.1113/jphysiol.2014.277152.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    El-Sharkawy TY, Daniel EE. Ionic mechanisms of intestinal electrical control activity. Am J Physiol. 1975;229(5):1287–98.CrossRefGoogle Scholar
  100. 100.
    El-Sharkawy TY, Szurszewski JH. Modulation of canine antral circular smooth muscle by acetylcholine, noradrenaline and pentagastrin. J Physiol. 1978;279:309–20.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Dahms V, Prosser CL, Suzuki N. Two types of ‘slow waves’ in intestinal smooth muscle of cat. J Physiol. 1987;392:51–69.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Huizinga JD, Farraway L, Den Hertog A. Generation of slow-wave-type action potentials in canine colon smooth muscle involves a non-L-type Ca2+ conductance. J Physiol. 1991;442:15–29.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ward SM, Sanders KM. Dependence of electrical slow waves of canine colonic smooth muscle on calcium gradient. J Physiol. 1992;455:307–19.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Ward SM, Sanders KM. Upstroke component of electrical slow waves in canine colonic smooth muscle due to nifedipine-resistant calcium current. J Physiol. 1992;455:321–37.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Kito Y, Suzuki H. Properties of pacemaker potentials recorded from myenteric interstitial cells of Cajal distributed in the mouse small intestine. J Physiol. 2003;553(Pt 3):803–18.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Ward SM, Dixon RE, de Faoite A, Sanders KM. Voltage-dependent calcium entry underlies propagation of slow waves in canine gastric antrum. J Physiol. 2004;561(Pt 3):793–810.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Bayguinov O, Ward SM, Kenyon JL, Sanders KM. Voltage-gated Ca2+ currents are necessary for slow-wave propagation in the canine gastric antrum. Am J Physiol Cell Physiol. 2007;293(5):C1645–59.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Drumm BT, Hennig GW, Battersby MJ, Cunningham EK, Sung TS, Ward SM, Sanders KM, Baker SA. Clustering of Ca(2+) transients in interstitial cells of Cajal defines slow wave duration. J Gen Physiol. 2017;149(7):703–25.  https://doi.org/10.1085/jgp.201711771.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Berridge MJ. Smooth muscle cell calcium activation mechanisms. J Physiol. 2008;586(Pt 21):5047–61.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441(7090):179–85.  https://doi.org/10.1038/nature04702.CrossRefPubMedGoogle Scholar
  111. 111.
    Prakriya M, Lewis RS. Store-operated calcium channels. Physiol Rev. 2015;95(4):1383–436.  https://doi.org/10.1152/physrev.00020.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Putney JWJ. Capacitative calcium entry revisited. Cell Calcium. 1990;11(10):611–24.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Berridge MJ. Inositol trisphosphate and calcium signalling. Nature. 1993;361(6410):315–25.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Dixon R, Hwang S, Britton F, Sanders K, Ward S. Inhibitory effect of caffeine on pacemaker activity in the oviduct is mediated by cAMP-regulated conductances. Br J Pharmacol. 2011;163(4):745–54.  https://doi.org/10.1111/j.1476-5381.2011.01266.x.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Johnston L, Sergeant GP, Hollywood MA, Thornbury KD, McHale NG. Calcium oscillations in interstitial cells of the rabbit urethra. J Physiol. 2005;565(Pt 2):449–61.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Aickin CC, Brading AF. Measurement of intracellular chloride in guinea-pig vas deferens by ion analysis, 36chloride efflux and micro-electrodes. J Physiol. 1982;326:139–54.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Greenwood IA, Leblanc N. Overlapping pharmacology of Ca2+-activated Cl− and K+ channels. Trends Pharmacol Sci. 2007;28(1):1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Ohba M, Sakamoto Y, Tomita T. The slow wave in the circular muscle of the guinea-pig stomach. J Physiol. 1975;253(2):505–16.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Rock JR, Harfe BD. Expression of TMEM16 paralogs during murine embryogenesis. Dev Dyn. 2008;237(9):2566–74.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Huang F, Rock JR, Harfe BD, Cheng T, Huang X, Jan YN, Jan LY. Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc Natl Acad Sci U S A. 2009;106(50):21413–8.  https://doi.org/10.1073/pnas.0911935106.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Gomez-Pinilla PJ, Gibbons SJ, Bardsley MR, Lorincz A, Pozo MJ, Pasricha PJ, de Rijn MV, West RB, Sarr MG, Kendrick ML, Cima RR, Dozois EJ, Larson DW, Ordog T, Farrugia G. Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol. 2009;296(6):G1370–81.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Xiao Q, Yu K, Perez-Cornejo P, Cui Y, Arreola J, Hartzell HC. Voltage- and calcium-dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop. Proc Natl Acad Sci U S A. 2011;108(21):8891–6.  https://doi.org/10.1073/pnas.1102147108.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Szurszewski JH. Electrical basis for gastrointestinal motility. In: Johnson LR, editor. Physiology of the gastrointestinal tract. 2nd ed. New York: Raven Press; 1987. p. 1435.Google Scholar
  124. 124.
    Diamant NE, Bortoff A. Nature of the intestinal slow-wave frequency gradient. Am J Physiol. 1969;216(2):301–7.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Szurszewski JH, Elveback LR, Code CF. Configuration and frequency gradient of electric slow wave over canine small bowel. Am J Phys. 1970;218(5):1468–73.  https://doi.org/10.1152/ajplegacy.1970.218.5.1468.CrossRefGoogle Scholar
  126. 126.
    Siegle ML, Buhner S, Schemann M, Schmid HR, Ehrlein HJ. Propagation velocities and frequencies of contractions along canine small intestine. Am J Physiol. 1990;258(5 Pt 1):G738–44.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Traurig HH, Papka RE. Autonomic efferent and visceral sensory innervation of the female reproductive system: special reference to the functional roles of nerves in reproductive organs. In: Maggi CA, editor. Nervous control of the urogenital system, The autonomic nervous system, vol. 3. Chur: Harwood Academic Publishers; 1993. p. 103–41.Google Scholar
  128. 128.
    Nance DM, Burns J, Klein CM, Burden HW. Afferent fibers in the reproductive system and pelvic viscera of female rats: anterograde tracing and immunocytochemical studies. Brain Res Bull. 1988;21(4):701–9.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Papka RE, Traurig HH. Autonomic efferent and visceral sensory innervation of the female reproductive tract: special reference to neurochemical markers in nerves and ganglionic connections. In: Maggi CA, editor. Nervous control of the urogenital system, The autonomic nervous system, vol. 3. Chur: Harwood Academic Publishers; 1993. p. 423–66.Google Scholar
  130. 130.
    Jankovic SM, Protic BA, Jankovic SV. Contractile effect of acetylcholine on isolated isthmic segment of fallopian tubes. Methods Find Exp Clin Pharmacol. 2004;26(2):87–91.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Jankovic SM, Protic BA, Jankovic SV. Contractile effect of acetylcholine on isolated ampullar segment of Fallopian tubes. Pharmacol Res. 2004;49(1):31–5.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Helm GH, Hakanson R, Leander S, Owman C, Sjoberg NO, Sporrong B. Neurogenic relaxation mediated by vasoactive intestinal polypeptide (VIP) in the isthmus of the human fallopian tube. Regul Pept. 1982;3(2):145–53.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Grozdanovic Z, Mayer B, Baumgarten HG, Bruning G. Nitric oxide synthase-containing nerve fibers and neurons in the genital tract of the female mouse. Cell Tissue Res. 1994;275(2):355–60.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Ekerhovd E, Brannstrom M, Weijdegard B, Norstrom A. Localization of nitric oxide synthase and effects of nitric oxide donors on the human Fallopian tube. Mol Hum Reprod. 1999;5(11):1040–7.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Lapointe J, Roy M, St-Pierre I, Kimmins S, Gauvreau D, MacLaren LA, Bilodeau JF. Hormonal and spatial regulation of nitric oxide synthases (NOS) (neuronal NOS, inducible NOS, and endothelial NOS) in the oviducts. Endocrinology. 2006;147(12):5600–10.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Ortiz ME, Villalon M, Croxatto HB. Ovum transport and fertility following postovulatory treatment with estradiol in rats. Biol Reprod. 1979;21(5):1163–7.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Rios M, Hermoso M, Sanchez TM, Croxatto HB, Villalon MJ. Effect of oestradiol and progesterone on the instant and directional velocity of microsphere movements in the rat oviduct: gap junctions mediate the kinetic effect of oestradiol. Reprod Fertil Dev. 2007;19(5):634–40.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med. 2001;345(19):1400–8.  https://doi.org/10.1056/NEJMra000763.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Wilcox AJ, Weinberg CR, O’Connor JF, Baird DD, Schlatterer JP, Canfield RE, Armstrong EG, Nisula BC. Incidence of early loss of pregnancy. N Engl J Med. 1988;319(4):189–94.  https://doi.org/10.1056/NEJM198807283190401.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Pisarska MD, Carson SA. Incidence and risk factors for ectopic pregnancy. Clin Obstet Gynecol. 1999;42(1):2–8; quiz 55–56PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    From the Centers for Disease Control and Prevention. Ectopic pregnancy—United States, 1990–1992. JAMA. 1995;273(7):533.CrossRefGoogle Scholar
  142. 142.
    Talbot P, Riveles K. Smoking and reproduction: the oviduct as a target of cigarette smoke. Reprod Biol Endocrinol. 2005;3:52.  https://doi.org/10.1186/1477-7827-3-52.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Saraiya M, Berg CJ, Kendrick JS, Strauss LT, Atrash HK, Ahn YW. Cigarette smoking as a risk factor for ectopic pregnancy. Am J Obstet Gynecol. 1998;178(3):493–8.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Yoshinaga K, Rice C, Krenn J, Pilot RL. Effects of nicotine on early pregnancy in the rat. Biol Reprod. 1979;20(2):294–303.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Jensen TK, Henriksen TB, Hjollund NH, Scheike T, Kolstad H, Giwercman A, Ernst E, Bonde JP, Skakkebaek NE, Olsen J. Caffeine intake and fecundability: a follow-up study among 430 Danish couples planning their first pregnancy. Reprod Toxicol. 1998;12(3):289–95.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    United Nations Office on Drugs and Crime. World drug report.Google Scholar
  147. 147.
    Feng T. Substance abuse in pregnancy. Curr Opin Obstet Gynecol. 1993;5(1):16–23.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Young-Wolff KC, Tucker LY, Alexeeff S, Armstrong MA, Conway A, Weisner C, Goler N. Trends in self-reported and biochemically tested Marijuana use among pregnant females in California from 2009–2016. JAMA. 2017;318(24):2490–1.  https://doi.org/10.1001/jama.2017.17225.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Maykut MO. Health consequences of acute and chronic marihuana use. Prog Neuropsychopharmacol Biol Psychiatry. 1985;9(3):209–38.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Mueller BA, Daling JR, Weiss NS, Moore DE. Recreational drug use and the risk of primary infertility. Epidemiology. 1990;1(3):195–200.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Klonoff-Cohen HS, Natarajan L, Chen RV. A prospective study of the effects of female and male marijuana use on in vitro fertilization (IVF) and gamete intrafallopian transfer (GIFT) outcomes. Am J Obstet Gynecol. 2006;194(2):369–76.  https://doi.org/10.1016/j.ajog.2005.08.020.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Horne AW, Phillips JA 3rd, Kane N, Lourenco PC, McDonald SE, Williams AR, Simon C, Dey SK, Critchley HO. CB1 expression is attenuated in Fallopian tube and decidua of women with ectopic pregnancy. PLoS One. 2008;3(12):e3969.  https://doi.org/10.1371/journal.pone.0003969.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Wang H, Guo Y, Wang D, Kingsley PJ, Marnett LJ, Das SK, DuBois RN, Dey SK. Aberrant cannabinoid signaling impairs oviductal transport of embryos. Nat Med. 2004;10(10):1074–80.  https://doi.org/10.1038/nm1104.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Maccarrone M, Valensise H, Bari M, Lazzarin N, Romanini C, Finazzi-Agro A. Relation between decreased anandamide hydrolase concentrations in human lymphocytes and miscarriage. Lancet. 2000;355(9212):1326–9.  https://doi.org/10.1016/S0140-6736(00)02115-2.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990;346(6284):561–4.  https://doi.org/10.1038/346561a0.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365(6441):61–5.  https://doi.org/10.1038/365061a0.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Sugiura T, Kodaka T, Nakane S, Miyashita T, Kondo S, Suhara Y, Takayama H, Waku K, Seki C, Baba N, Ishima Y. Evidence that the cannabinoid CB1 receptor is a 2-arachidonoylglycerol receptor. Structure-activity relationship of 2-arachidonoylglycerol, ether-linked analogues, and related compounds. J Biol Chem. 1999;274(5):2794–801.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995;215(1):89–97.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50(1):83–90.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Maccarrone M, Finazzi-Agro A. Endocannabinoids and their actions. Vitam Horm. 2002;65:225–55.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci. 2003;4(11):873–84.  https://doi.org/10.1038/nrn1247.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    De Petrocellis L, Cascio MG, Di Marzo V. The endocannabinoid system: a general view and latest additions. Br J Pharmacol. 2004;141(5):765–74.  https://doi.org/10.1038/sj.bjp.0705666.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Paria BC, Das SK, Dey SK. The preimplantation mouse embryo is a target for cannabinoid ligand-receptor signaling. Proc Natl Acad Sci U S A. 1995;92(21):9460–4.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Paria BC, Song H, Wang X, Schmid PC, Krebsbach RJ, Schmid HH, Bonner TI, Zimmer A, Dey SK. Dysregulated cannabinoid signaling disrupts uterine receptivity for embryo implantation. J Biol Chem. 2001;276(23):20523–8.  https://doi.org/10.1074/jbc.M100679200.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Schmid PC, Paria BC, Krebsbach RJ, Schmid HH, Dey SK. Changes in anandamide levels in mouse uterus are associated with uterine receptivity for embryo implantation. Proc Natl Acad Sci U S A. 1997;94(8):4188–92.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Wang H, Matsumoto H, Guo Y, Paria BC, Roberts RL, Dey SK. Differential G protein-coupled cannabinoid receptor signaling by anandamide directs blastocyst activation for implantation. Proc Natl Acad Sci U S A. 2003;100(25):14914–9.  https://doi.org/10.1073/pnas.2436379100.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Nawrot P, Jordan S, Eastwood J, Rotstein J, Hugenholtz A, Feeley M. Effects of caffeine on human health. Food Addit Contam. 2003;20(1):1–30.  https://doi.org/10.1080/0265203021000007840.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Stanton CK, Gray RH. Effects of caffeine consumption on delayed conception. Am J Epidemiol. 1995;142(12):1322–9.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Bolumar F, Olsen J, Rebagliato M, Bisanti L. Caffeine intake and delayed conception: a European multicenter study on infertility and subfecundity. European Study Group on Infertility Subfecundity. Am J Epidemiol. 1997;145(4):324–34.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Florack EI, Zielhuis GA, Rolland R. Cigarette smoking, alcohol consumption, and caffeine intake and fecundability. Prev Med. 1994;23(2):175–80.  https://doi.org/10.1006/pmed.1994.1024.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Hatch EE, Bracken MB. Association of delayed conception with caffeine consumption. Am J Epidemiol. 1993;138(12):1082–92.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Parker I, Ivorra I. Caffeine inhibits inositol trisphosphate-mediated liberation of intracellular calcium in Xenopus oocytes. J Physiol. 1991;433:229–40.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Butcher RW, Sutherland EW. Adenosine 3′,5′-phosphate in biological materials. I. Purification and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′,5′-phosphate in human urine. J Biol Chem. 1962;237:1244–50.PubMedPubMedCentralGoogle Scholar
  174. 174.
    Beavo JA. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev. 1995;75(4):725–48.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Kim M, Cho SY, Han IS, Koh SD, Perrino BA. CaM kinase II and phospholamban contribute to caffeine-induced relaxation of murine gastric fundus smooth muscle. Am J Physiol Cell Physiol. 2005;288(6):C1202–10.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Kim M, Hennig GW, Smith TK, Perrino BA. Phospholamban knockout increases CaM kinase II activity and intracellular Ca2+ wave activity and alters contractile responses of murine gastric antrum. Am J Physiol Cell Physiol. 2008;294(2):C432–41.  https://doi.org/10.1152/ajpcell.00418.2007.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Nobe K, Sutliff RL, Kranias EG, Paul RJ. Phospholamban regulation of bladder contractility: evidence from gene-altered mouse models. J Physiol. 2001;535(Pt 3):867–78.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Eggermont JA, Vrolix M, Wuytack F, Raeymaekers L, Casteels R. The (Ca2+-Mg2+)-ATPases of the plasma membrane and of the endoplasmic reticulum in smooth muscle cells and their regulation. J Cardiovasc Pharmacol. 1988;12(Suppl 5):S51–5.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Meera P, Anwer K, Monga M, Oberti C, Stefani E, Toro L, Sanborn BM. Relaxin stimulates myometrial calcium-activated potassium channel activity via protein kinase A. Am J Physiol. 1995;269(2 Pt 1):C312–7.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Sanborn BM, Yue C, Wang W, Dodge KL. G protein signalling pathways in myometrium: affecting the balance between contraction and relaxation. Rev Reprod. 1998;3(3):196–205.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Price SA, Bernal AL. Uterine quiescence: the role of cyclic AMP. Exp Physiol. 2001;86(2):265–72.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Quayle JM, Bonev AD, Brayden JE, Nelson MT. Calcitonin gene-related peptide activated ATP-sensitive K+ currents in rabbit arterial smooth muscle via protein kinase A. J Physiol. 1994;475(1):9–13.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Wellman GC, Quayle JM, Standen NB. ATP-sensitive K+ channel activation by calcitonin gene-related peptide and protein kinase A in pig coronary arterial smooth muscle. J Physiol. 1998;507(Pt 1):117–29.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Quinn KV, Giblin JP, Tinker A. Multisite phosphorylation mechanism for protein kinase A activation of the smooth muscle ATP-sensitive K+ channel. Circ Res. 2004;94(10):1359–66.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Shi Y, Wu Z, Cui N, Shi W, Yang Y, Zhang X, Rojas A, Ha BT, Jiang C. PKA phosphorylation of SUR2B subunit underscores vascular KATP channel activation by beta-adrenergic receptors. Am J Physiol Regul Integr Comp Physiol. 2007;293(3):R1205–14.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Shi Y, Chen X, Wu Z, Shi W, Yang Y, Cui N, Jiang C, Harrison RW. cAMP-dependent protein kinase phosphorylation produces interdomain movement in SUR2B leading to activation of the vascular KATP channel. J Biol Chem. 2008;283(12):7523–30.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Burg AW. Physiological disposition of caffeine. Drug Metab Rev. 1975;4(2):199–228.  https://doi.org/10.3109/03602537508993756.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    White JR Jr, Padowski JM, Zhong Y, Chen G, Luo S, Lazarus P, Layton ME, McPherson S. Pharmacokinetic analysis and comparison of caffeine administered rapidly or slowly in coffee chilled or hot versus chilled energy drink in healthy young adults. Clin Toxicol (Phila). 2016;54(4):308–12.  https://doi.org/10.3109/15563650.2016.1146740.CrossRefGoogle Scholar
  189. 189.
    Adderley-Kelly B, Stephens EM. Chlamydia: a major health threat to adolescents and young adults. ABNF J. 2005;16(3):52–5.PubMedPubMedCentralGoogle Scholar
  190. 190.
    Stamm WE. Chlamydia screening: expanding the scope. Ann Intern Med. 2004;141(7):570–2.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    World Health Organization. Global prevalence and incidence of selected curable sexually transmitted infections overview and estimates. Geneva: WHO; 2001.Google Scholar
  192. 192.
    Entrican G, Wattegedera S, Rocchi M, Fleming DC, Kelly RW, Wathne G, Magdalenic V, Howie SE. Induction of inflammatory host immune responses by organisms belonging to the genera Chlamydia/Chlamydophila. Vet Immunol Immunopathol. 2004;100(3–4):179–86.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    World Health Organization. Global strategy for the prevention and control of sexually transmitted infections: 2006–2015: breaking the chain of transmission. Geneva: WHO; 2007.Google Scholar
  194. 194.
    Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Utterback T, Berry K, Bass S, Linher K, Weidman J, Khouri H, Craven B, Bowman C, Dodson R, Gwinn M, Nelson W, DeBoy R, Kolonay J, McClarty G, Salzberg SL, Eisen J, Fraser CM. Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res. 2000;28(6):1397–406.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Brunham RC, Rey-Ladino J. Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol. 2005;5(2):149–61.PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Shah AA, Schripsema JH, Imtiaz MT, Sigar IM, Kasimos J, Matos PG, Inouye S, Ramsey KH. Histopathologic changes related to fibrotic oviduct occlusion after genital tract infection of mice with Chlamydia muridarum. Sex Transm Dis. 2005;32(1):49–56.PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Eskandari MK, Kalff JC, Billiar TR, Lee KK, Bauer AJ. LPS-induced muscularis macrophage nitric oxide suppresses rat jejunal circular muscle activity. Am J Physiol. 1999;277(2 Pt 1):G478–86.PubMedPubMedCentralGoogle Scholar
  198. 198.
    Kalff JC, Schraut WH, Billiar TR, Simmons RL, Bauer AJ. Role of inducible nitric oxide synthase in postoperative intestinal smooth muscle dysfunction in rodents. Gastroenterology. 2000;118(2):316–27.PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Yanagida H, Sanders KM, Ward SM. Inactivation of inducible nitric oxide synthase protects intestinal pacemaker cells from postoperative damage. J Physiol. 2007;582(Pt 2):755–65.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Xin HB, Deng KY, Rishniw M, Ji G, Kotlikoff MI. Smooth muscle expression of Cre recombinase and eGFP in transgenic mice. Physiol Genomics. 2002;10(3):211–5.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rose E. Dixon
    • 1
  • Sung Jin Hwang
    • 2
  • Bo Hyun Kim
    • 2
  • Kenton M. Sanders
    • 2
  • Sean M. Ward
    • 2
    Email author
  1. 1.Department of Physiology and Membrane Biology, School of Medicine, Tupper HallUniversity of California, DavisDavisUSA
  2. 2.Department of Physiology and Cell BiologyUniversity of Nevada, Reno School of MedicineRenoUSA

Personalised recommendations