Advertisement

Lossy Thin Loops and Rings

  • Arnold McKinleyEmail author
Chapter
Part of the Signals and Communication Technology book series (SCT)

Abstract

As the frequency of the driving source approaches 100–200 GHz, the metal begins to take on dielectric characteristics. This is captured using an extended Drude and critical point model of the index of refraction. The resulting effect on the governing equation of the loop is fully captured by adding a complex surface impedance term to every modal impedance. This chapter describes this phenomenon in some detail. The relationship between surface impedance and the index of refraction is derived and its effects on the input impedance and on the RLC circuit model of the loop are analysed. These effects add up to a saturation phenomenon of the resonance of the loop. In other words, the loop will not resonate much above 75 THz no matter how small the loop becomes. The final sections of the chapter characterise the effect on the radiation formulae and on radiation losses of the loop.

References

  1. 1.
    J.A. Stratton, Electromagnetic Theory (McGraw-Hill Book Company, New York, 1941)zbMATHGoogle Scholar
  2. 2.
    G.W. Hanson, IEEE Trans. Antennas Propag. 54(12), 3677 (2006)CrossRefGoogle Scholar
  3. 3.
    E. Hallen, Nova Actae Regiae Soc. Sci. Upsaliensis Ser. IV, 11(4), 1 (1938)Google Scholar
  4. 4.
    L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).  https://doi.org/10.1103/PhysRevLett.98.266802CrossRefGoogle Scholar
  5. 5.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 6(12), 4370 (1972)CrossRefGoogle Scholar
  6. 6.
    Computer Simulation Technology (2018). https://www.cst.com
  7. 7.
    I. Stegun, M. Abramowitz, Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables, vol. 55, Applied Mathematics Series (US. Governent Printing Office, Washington, D.C., 1964)zbMATHGoogle Scholar
  8. 8.
    T. Okamoto, T. Otsuka, S. Sato, T. Fukuta, M. Haraguchi, Opt. Express 20(21), 24059 (2012).  https://doi.org/10.1364/OE.20.024059CrossRefGoogle Scholar
  9. 9.
    J.B. Khurgin, G. Sun, Appl. Phys. Lett 99(21), 211106 (2011).  https://doi.org/10.1063/1.3664105, http://link.aip.org/link/?APL/99/211106/1
  10. 10.
    C.M. Soukoulis, T. Koschny, J. Zhou, M. Kafesaki, E.N. Economou, Phys. Status Solidi (b) 244(4), 1181 (2007).  https://doi.org/10.1002/pssb.200674503CrossRefGoogle Scholar
  11. 11.
    M.W. Klein, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Opt. Lett. 31, 1259 (2006)CrossRefGoogle Scholar
  12. 12.
    D.Ö. Güney, T. Koschny, C.M. Soukoulis, Phys. Rev. B 80(12), 125129 (2009).  https://doi.org/10.1103/PhysRevB.80.125129CrossRefGoogle Scholar
  13. 13.
    V. Savov, IEEE Antennas Propag. Mag. 45(3), 129 (2003)CrossRefGoogle Scholar
  14. 14.
    B.Q. Lu, J. Nagar, T. Yue, M.F. Pantoja, D.H. Werner, IEEE Trans. Antennas Propag. 65(1), 121 (2017)CrossRefGoogle Scholar
  15. 15.
    M.F. Pantoja, J. Nagar, B. Lu, T. Yue, D.H. Werner, in 2016 10th European Conference on Antennas and Propagation (EuCAP) (2016), pp. 1–4.  https://doi.org/10.1109/EuCAP.2016.7481565

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University College LondonLondonUK

Personalised recommendations