Advertisement

General Introduction

  • Arnold McKinleyEmail author
Chapter
Part of the Signals and Communication Technology book series (SCT)

Abstract

Experimental work on loop antennas in the radio frequency (RF) region reaches back in time to the development of the first radiating structures. Almost immediately differences were identified between loops and linear dipoles, which showed that dipoles were to be much preferred over loops for AM broadcast applications. But with time, loops were found useful for FM at ultra-high frequencies (UHF) and for a few special needs. Unfortunately, loop antennas never attained as wide an acceptance in communications as that enjoyed by structures derived from dipoles. In 1999, loops seem to have a found a place in history. The development of meta-material structures, using small split-rings, suggests that loops may enjoy a renaissance as nano-scaled rings in the Microwave (MW), TeraHertz (THz) and Optical regions. This chapter covers the experimental and analytical history of RF loops and of nano-scaled rings.

References

  1. 1.
    C.A. Balanis, Antenna Theory, Analysis and Design, 4th edn. (Wiley, New York, 2016)Google Scholar
  2. 2.
    L.W. Rispin, D.C. Chang, Antenna Theory, in Antenna Handbook, vol. II, 2nd edn., ed. by L.Y. T, S.W. Lee (Van Nostrand Reinhold, New York, 1993), pp. 1–51Google Scholar
  3. 3.
    C. Burrows, Proc. IRE 50(5), 682 (1962).  https://doi.org/10.1109/JRPROC.1962.288097CrossRefGoogle Scholar
  4. 4.
    P. Carter, H. Beverage, Proc. IRE 50(5), 679 (1962).  https://doi.org/10.1109/JRPROC.1962.288096CrossRefGoogle Scholar
  5. 5.
  6. 6.
    J. Ramsay, IEEE Antennas Propag. Soc. Newslett. 23(6), 7 (1981).  https://doi.org/10.1109/MAP.1981.27575CrossRefGoogle Scholar
  7. 7.
    C.H. Sterling, in Encyclopedia of Radio 3-Volume Set, ed. by C.H. Sterling (Taylor and Francis, Abingdon, 2004), pp. 137–140Google Scholar
  8. 8.
    J.H. Dunlavy, Us patent 3,588,905: Wide range tunable transmitting loop antenna (1971). http://www.google.co.uk/patents/US3588905
  9. 9.
    E.A. Laport, Radio Antenna Engineering (McGraw-Hill Book Company, New York, 1952)Google Scholar
  10. 10.
    S.D.C. Orr, I. William, All About Cubical Quad Antennas (Radio Publications, 1959)Google Scholar
  11. 11.
    A. Alford, A.G. Kandoian, Electr. Eng. 59(12), 843 (1940).  https://doi.org/10.1109/EE.1940.6435249CrossRefGoogle Scholar
  12. 12.
  13. 13.
  14. 14.
    L. Lessing, Man of High Fidelity: Edwin Howard Armstrong (Lippincott, New York City, 1956)Google Scholar
  15. 15.
    I.P.G. on Antennas, Propagation (eds.). Proceedings of the IRE: Antennas and Propagation, Section 2 (IRE, 1962)Google Scholar
  16. 16.
    A.L. Budlong (ed.), The A.R.R.L. Antenna Book, 9th edn. (The American Radio Relay League, Newington, 1960)Google Scholar
  17. 17.
    J.B. McKinley II, The design of a single capacitor ccrl (1964). Personal papersGoogle Scholar
  18. 18.
    K. Patterson, Electronics (1967)Google Scholar
  19. 19.
    L.G. McCoy, QST LII(3), 17 (1968)Google Scholar
  20. 20.
    J. Kraus (ed.), The A.R.R.L. Antenna Book, 15th edn. (The American Radio Relay League, Newington, 1988)Google Scholar
  21. 21.
    A.R.R. League (ed.), ARRL Antenna Handbook, cd rom edition edn. (American Radio Relay League). https://www.qrz.ru/schemes/contribute/arrl/chap5.pdf
  22. 22.
    R.T. Hart, QST pp. 33–36 (1986)Google Scholar
  23. 23.
    R.T. Hart, The ARRL Antenna Book (1994), p. 11Google Scholar
  24. 24.
    D. Bloom, D.W. Bloom, Phys. Teach. 41(5), 292 (2003).  https://doi.org/10.1119/1.1571265CrossRefGoogle Scholar
  25. 25.
    H.C. Pocklington, Proc. Cambridge Phil. Soc. 9, 324 (1897)Google Scholar
  26. 26.
    E. Hallen, Nova Actae Regiae Soc.Sci. Upsaliensis Ser. IV, 11(No.4), 1 (1938)Google Scholar
  27. 27.
    J.E. Storer, Impedance of the thin wire loop. Technical Report 212, Cruft Laboratory, Harvard University (1955)Google Scholar
  28. 28.
    J.E. Storer, Trans. AIEE 75, 606 (1956)Google Scholar
  29. 29.
    R. King, J. Harrison, C., D. Tingley, IEEE Trans. Antennas Propag. 12(4), 434 (1964).  https://doi.org/10.1109/TAP.1964.1138244
  30. 30.
    T.T. Wu, J. Math. Phys. 3(6), 1301 (1962)CrossRefGoogle Scholar
  31. 31.
    K. Iizuka, IEEE Trans, Antennas Propag. 13(1), 7 (1965)Google Scholar
  32. 32.
    B.A. Rao, IEEE Trans. Antennas Propag. (1968)Google Scholar
  33. 33.
    M. Kanda, IEEE Trans. Electromagn. Compat. EMC-26(3), 102 (1984)Google Scholar
  34. 34.
    L.W. Li, C.P. Lim, M.S. Leong, in Antennas and Propagation Society International Symposium, 1999. IEEE, vol. 4 (1999), vol. 4, pp. 2542–2545 vol.4.  https://doi.org/10.1109/APS.1999.789327
  35. 35.
    L. RongLin, N.A. Bushyager, J. Laskar, M.M. Tentzeris, IEEE Trans, Antennas Propag. 53(12), 3920 (2005)Google Scholar
  36. 36.
    J. Herman, One-Turn Loop Antenna, No. 3078462 (US. Patent Office, 5353 Chillum Place, Washington DC, USA, 1963)Google Scholar
  37. 37.
    R.F. Harrington, Proc. Inst. Electr. Eng. 111(4), 617 (1964).  https://doi.org/10.1049/piee.1964.0111CrossRefGoogle Scholar
  38. 38.
    R.F. Harrington, J.L. Ryerson, Radio Sci. 1, 347 (1966)CrossRefGoogle Scholar
  39. 39.
    R. Harrington, J. Mautz, Proc. Inst. Electr. Eng. 115(1), 68 (1968).  https://doi.org/10.1049/piee.1968.0011CrossRefGoogle Scholar
  40. 40.
    K. Iizuka, R. King, J. Harrison, C., IEEE Trans. Antennas Propag. 14(4), 440 (1966).  https://doi.org/10.1109/TAP.1966.1138711
  41. 41.
    G.A. Thiele, Radar cross section of open circular loops (Technical report, DTIC Document, 1967)Google Scholar
  42. 42.
    A.F. McKinley, T.P. White, I.S. Maksymov, K.R. Catchpole, J. Appl. Phys. 112(9), 094911 (2012).  https://doi.org/10.1063/1.4764104, http://link.aip.org/link/?JAP/112/094911/1
  43. 43.
    A.F. McKinley, T.P. White, K.R. Catchpole, J. Appl. Phys. 114(4), 044317 (2013).  https://doi.org/10.1063/1.4816619, http://scitation.aip.org/content/aip/journal/jap/114/4/10.1063/1.4816619
  44. 44.
    A.F. McKinley, IEEE Trans, Antennas Propag. 65(5), 2276 (2017)Google Scholar
  45. 45.
    E.J. Martin Jr., IRE Trans. Antennas Propag. AP-8(1), 105 (1960)Google Scholar
  46. 46.
    D. Werner, IEEE Trans, Antennas Propag. 44(2), 157 (1996).  https://doi.org/10.1109/8.481642
  47. 47.
    L. Le-Wei, L. Mook-Seng, K. Pang-Shyan, Y. Tat-Soon, IEEE Trans, Antennas Propag. 45(12), 1741 (1997)Google Scholar
  48. 48.
    V.G. Veselago, Sov. Phys. Uspekhi 10, 4 (1968)CrossRefGoogle Scholar
  49. 49.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, I.E.E.E. Trans, Microw. Theory Tech. 47, 11 (1999)CrossRefGoogle Scholar
  50. 50.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).  https://doi.org/10.1103/PhysRevLett.84.4184
  51. 51.
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292(5514), 77 (2001).  https://doi.org/10.1126/science.1058847, http://www.sciencemag.org/content/292/5514/77.abstract
  52. 52.
    J.B. Pendry, Phys. Rev. Lett. 85(18), 3966 (2000)CrossRefGoogle Scholar
  53. 53.
    M. Shamonin, E. Shamonina, V. Kalinin, L. Solymar, J. Appl. Phys. 95(7), 3778 (2004).  https://doi.org/10.1063/1.1652251CrossRefGoogle Scholar
  54. 54.
    L. Zhou, S.T. Chui, Phys. Rev. B 74, 035419 (2006).  https://doi.org/10.1103/PhysRevB.74.035419CrossRefGoogle Scholar
  55. 55.
    A. Radkovskaya, M. Shamonin, C.J. Stevens, G. Faulkner, D.J. Edwards, E. Shamonina, L. Solymar, Microw. Optical Technol. Lett. 46(5), 473 (2005).  https://doi.org/10.1002/mop.21021CrossRefGoogle Scholar
  56. 56.
    H. Mosallaei, K. Sarabandi, I.E.E.E. Trans, Antennas Propag. 55(1), 45 (2007).  https://doi.org/10.1109/TAP.2006.886566CrossRefGoogle Scholar
  57. 57.
    K. Aydin, E. Ozbay, J. Appl. Phys. 101, 024911 (2007)CrossRefGoogle Scholar
  58. 58.
    O. Sydoruk, E. Tatartschuk, E. Shamonina, L. Solymar, J. Appl. Phys. 105, 014903 (2009)CrossRefGoogle Scholar
  59. 59.
    D.R. Chowdhury, R. Singh, M. Reiten, J. Zhou, A.J. Taylor, J.F. O’Hara, Opt. Express 19(11), 10679 (2011).  https://doi.org/10.1364/OE.19.010679, http://www.opticsexpress.org/abstract.cfm?URI=oe-19-11-10679
  60. 60.
    T.R. Zhan, S.T. Chui, Journal of Applied Physics 115(14), 144901 (2014).  https://doi.org/10.1063/1.4870863, http://scitation.aip.org/content/aip/journal/jap/115/14/10.1063/1.4870863
  61. 61.
    A.L. Koh, D.W. McComb, S.A. Maier, H. Low, J.K.W. Yang, J. Vac. Sci. Technol. B: Microelectr. Nanometer Struct. 28(6), C6O45 (2010).  https://doi.org/10.1116/1.3501351
  62. 62.
    B. Memarzadeh, H. Mosallaei, Opt. Lett. 36, 2569 (2011)CrossRefGoogle Scholar
  63. 63.
    S.Y. Chiam, R. Singh, W. Zhang, A.A. Bettio, Appl. Phys. Lett. 97, 191906 (2010)CrossRefGoogle Scholar
  64. 64.
    A. Ahmadi, H. Mosallaei, Opt. Lett. 35, 3706 (2010)CrossRefGoogle Scholar
  65. 65.
    I.S. Maksymov, A.E. Miroshnichenko, Y.S. Kivshar, Opt. Express 20(8), 8929 (2012).  https://doi.org/10.1364/OE.20.008929, http://www.opticsexpress.org/abstract.cfm?URI=oe-20-8-8929
  66. 66.
    E.M. Larsson, J. Alegret, M. Käll, D.S. Sutherland, Nano Lett. 7(5), 1256 (2007).  https://doi.org/10.1021/nl0701612CrossRefGoogle Scholar
  67. 67.
    S. Mokkapati, F.J. Beck, R. de Waele, A. Polman, K.R. Catchpole, J. Phys. D: Appl. Phys. 44(18), 185101 (2011). http://stacks.iop.org/0022-3727/44/i=18/a=185101
  68. 68.
    M. Fan, G.F. Andradec, A.G. Brolo, Analytica Chimica Acta 693, 7 (2011)CrossRefGoogle Scholar
  69. 69.
    M.F. Pantoja, J. Nagar, B. Lu, D.H. Werner, ACS Photon. 4(3), 509 (2017).  https://doi.org/10.1021/acsphotonics.6b00486CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University College LondonLondonUK

Personalised recommendations