Summary and Discussion

  • Xianghao Yu
  • Chang Li
  • Jun Zhang
  • Khaled B. Letaief


This chapter summaries the book and discusses potential extensions. This book introduces analytical methodologies for large-scale multi-antenna wireless networks. The main analytical results presented in the previous chapters are first summarized. Then, extensions of the presented analytical framework are discussed from two aspects. More general network models are discussed in the first part, including more generic channel models, precoding/combining techniques, cell association strategies, and random spatial network models. Extensions to newly emerged application scenarios are then introduced in the second part, including unmanned aerial vehicle systems, physical layer security-aware networks, and vehicular communications systems.


  1. 1.
    H. Inaltekin, M. Chiang, H.V. Poor, S.B. Wicker, On unbounded path-loss models: effects of singularity on wireless network performance. IEEE J. Sel. Areas Commun. 27, 1078–1092 (2009)CrossRefGoogle Scholar
  2. 2.
    X. Zhang, J.G. Andrews, Downlink cellular network analysis with multi-slope path loss models. IEEE Trans. Commun. 63, 1881–1894 (2015)CrossRefGoogle Scholar
  3. 3.
    T.S. Rappaport, R.W. Heath Jr., R.C. Daniels, J.N. Murdock, Millimeter Wave Wireless Communications (Pearson Education, 2014)Google Scholar
  4. 4.
    J.D. Griffin, G.D. Durgin, Complete link budgets for backscatter-radio and RFID systems. IEEE Antennas Propag. Mag. 51, 11–25 (2009)CrossRefGoogle Scholar
  5. 5.
    O.E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, R.W. Heath Jr., Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. Wirel. Commun. 13, 1499–1513 (2014)CrossRefGoogle Scholar
  6. 6.
    X. Yu, J. Shen, J. Zhang, K.B. Letaief, Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J. Sel. Topics Signal Process. 10, 485–500 (2016)CrossRefGoogle Scholar
  7. 7.
    L. Liang, W. Xu, X. Dong, Low-complexity hybrid precoding in massive multiuser mimo systems. IEEE Wirel. Commun. Lett. 3, 653–656 (2014)CrossRefGoogle Scholar
  8. 8.
    H.S. Jo, Y.J. Sang, P. Xia, J.G. Andrews, Heterogeneous cellular networks with flexible cell association: a comprehensive downlink SINR analysis. IEEE Trans. Wirel. Commun. 11, 3484–3495 (2012)CrossRefGoogle Scholar
  9. 9.
    R. Madan, J. Borran, A. Sampath, N. Bhushan, A. Khandekar, T. Ji, Cell association and interference coordination in heterogeneous LTE-A cellular networks. IEEE J. Sel. Areas Commun. 28, 1479–1489 (2010)CrossRefGoogle Scholar
  10. 10.
    K. Son, S. Chong, G.D. Veciana, Dynamic association for load balancing and interference avoidance in multi-cell networks. IEEE Trans. Wirel. Commun. 8, 3566–3576 (2009)CrossRefGoogle Scholar
  11. 11.
    D. Bethanabhotla, O.Y. Bursalioglu, H.C. Papadopoulos, G. Caire, Optimal user-cell association for massive MIMO wireless networks. IEEE Trans. Wirel. Commun. 15, 1835–1850 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Boostanimehr, V.K. Bhargava, Unified and distributed QoS-driven cell association algorithms in heterogeneous networks. IEEE Trans. Wirel. Commun. 14, 1650–1662 (2015)CrossRefGoogle Scholar
  13. 13.
    C. Lee, M. Haenggi, Interference and outage in poisson cognitive networks. IEEE Trans. Wirel. Commun. 11, 1392–1401 (2012)CrossRefGoogle Scholar
  14. 14.
    Z. Yazdanshenasan, H.S. Dhillon, M. Afshang, P.H.J. Chong, Poisson hole process: theory and applications to wireless networks. IEEE Trans. Wirel. Commun. 15, 7531–7546 (2016)CrossRefGoogle Scholar
  15. 15.
    V.V. Chetlur, H.S. Dhillon, Coverage analysis of a vehicular network modeled as cox process driven by Poisson line process. IEEE Trans. Wirel. Commun. 17, 4401–4416 (2018)CrossRefGoogle Scholar
  16. 16.
    T.D. Novlan, H.S. Dhillon, J.G. Andrews, Analytical modeling of uplink cellular networks. IEEE Trans. Wirel. Commun. 12, 2669–2679 (2013)CrossRefGoogle Scholar
  17. 17.
    H. ElSawy, E. Hossain, On stochastic geometry modeling of cellular uplink transmission with truncated channel inversion power control. IEEE Trans. Wirel. Commun. 13, 4454–4469 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Wang, M. Haenggi, Z. Tan, The meta distribution of the SIR for cellular networks with power control. IEEE Trans. Commun. 66, 1745–1757 (2018)CrossRefGoogle Scholar
  19. 19.
    J.G. Andrews, F. Baccelli, R.K. Ganti, A tractable approach to coverage and rate in cellular networks. IEEE Trans. Commun. 59, 3122–3134 (2011)CrossRefGoogle Scholar
  20. 20.
    Q. Wu, Y. Zeng, R. Zhang, Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Trans. Wirel. Commun. 17, 2109–2121 (2018)CrossRefGoogle Scholar
  21. 21.
    M. Mozaffari, W. Saad, M. Bennis, M. Debbah, Mobile unmanned aerial vehicles (UAVs) for energy-efficient internet of things communications. IEEE Trans. Wirel. Commun. 16, 7574–7589 (2017)CrossRefGoogle Scholar
  22. 22.
    O. Esrafilian, R. Gangula, D. Gesbert, Learning to communicate in UAV-aided wireless networks: map-based approaches. IEEE Internet Things J. (to appear)Google Scholar
  23. 23.
    M. Alzenad, A. El-Keyi, F. Lagum, H. Yanikomeroglu, 3-d placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage. IEEE Wirel. Commun. Lett. 6, 434–437 (2017)CrossRefGoogle Scholar
  24. 24.
    Y. Zeng, J. Lyu, R. Zhang, Cellular-connected UAV: Potential, challenges and promising technologies. IEEE Wirel. Commun. (to appear)Google Scholar
  25. 25.
    A. Al-Hourani, S. Kandeepan, A. Jamalipour, Modeling air-to-ground path loss for low altitude platforms in urban environments, in IEEE Global Communications Conference (GLOBECOM) (Dec 2014), pp. 2898–2904Google Scholar
  26. 26.
    A. Wyner, The wire-tap channel. Bell Syst. Tech. J. 54, 1355–1387 (1975)MathSciNetCrossRefGoogle Scholar
  27. 27.
    I. Csiszár, J. Körner, Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24, 339–348 (1978)MathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Mukherjee, S.A.A. Fakoorian, J. Huang, A.L. Swindlehurst, Principles of physical layer security in multiuser wireless networks: a survey. IEEE Commun. Surv. Tuts. 16, 1550–1573 (2014) (3rd Quart.)Google Scholar
  29. 29.
    Y. Shiu, S.Y. Chang, H. Wu, S.C.-H. Huang, H. Chen, Physical layer security in wireless networks: a tutorial. IEEE Wirel. Commun. 18, 66–74 (2011)CrossRefGoogle Scholar
  30. 30.
    H. Wang, T. Zheng, J. Yuan, D. Towsley, M.H. Lee, Physical layer security in heterogeneous cellular networks. IEEE Trans. Commun. 64, 1204–1219 (2016)CrossRefGoogle Scholar
  31. 31.
    A. Rabbachin, A. Conti, M.Z. Win, Wireless network intrinsic secrecy. IEEE/ACM Trans. Netw. 23, 56–69 (2015)CrossRefGoogle Scholar
  32. 32.
    E. Tekin, A. Yener, The general Gaussian multiple-access and two-way wiretap channels: achievable rates and cooperative jamming. IEEE Trans Inf. Theory 54, 2735–2751 (2008)MathSciNetCrossRefGoogle Scholar
  33. 33.
    X. Zhou, M. Tao, R.A. Kennedy, Cooperative jamming for secrecy in decentralized wireless networks, in Proceedings of the IEEE International Conference on Communications (ICC), (Ottawa, Canada, 2012), pp. 2339–2344Google Scholar
  34. 34.
    S. Goel, R. Negi, Guaranteeing secrecy using artificial noise. IEEE Trans. Wirel. Commun. 7, 2180–2189 (2008)CrossRefGoogle Scholar
  35. 35.
    W. Shi, J.A. Ritcey, Distributed jamming for secure communication in Poisson fields of legitimate nodes and eavesdroppers, in Proceedings of the Asilomar Conference on Signals, Systems, and Computers, (Pacific Grove, CA, 2012), pp. 1881–1885Google Scholar
  36. 36.
    X. Zhang, X. Zhou, M.R. McKay, Enhancing secrecy with multi-antenna transmission in wireless ad hoc networks. IEEE Trans. Inf. Forensics Secur. 8, 1802–1814 (2013)CrossRefGoogle Scholar
  37. 37.
    S. Biswas, R. Tatchikou, F. Dion, Vehicle-to-vehicle wireless communication protocols for enhancing highway traffic safety. IEEE Commun. Mag. 44, 74–82 (2006)CrossRefGoogle Scholar
  38. 38.
    Q. Zheng, K. Zheng, L. Sun, V.C.M. Leung, Dynamic performance analysis of uplink transmission in cluster-based heterogeneous vehicular networks. IEEE Trans. Veh. Tech. 64, 5584–5595 (2015)CrossRefGoogle Scholar
  39. 39.
    C. Choi, F. Baccelli, An analytical framework for coverage in cellular networks leveraging vehicles. IEEE Trans. Commun. 66, 4950–4964 (2018)Google Scholar
  40. 40.
    Y. Zhu, Y. Bao, B. Li, On maximizing delay-constrained coverage of urban vehicular networks. IEEE J. Sel. Areas Commun. 30, 804–817 (2012)CrossRefGoogle Scholar
  41. 41.
    S. Schwarz, T. Philosof, M. Rupp, Signal processing challenges in cellular-assisted vehicular communications: Efforts and developments within 3GPP LTE and beyond. IEEE Signal Process. Mag. 34, 47–59 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xianghao Yu
    • 1
  • Chang Li
    • 1
  • Jun Zhang
    • 2
  • Khaled B. Letaief
    • 1
  1. 1.Department of Electronic and Computer EngineeringHong Kong University of Science and TechnologyHong KongChina
  2. 2.Department of Electronic and Information EngineeringHong Kong Polytechnic UniversityKowloon, Hong KongChina

Personalised recommendations