Optimization of Multi-Antenna Wireless Networks

  • Xianghao Yu
  • Chang Li
  • Jun Zhang
  • Khaled B. Letaief


This chapter presents two applications of the general analytical framework on network design and optimization. The first application considers interference coordination. A tractable expression is first derived for the coverage probability of a user-centric interference nulling strategy, which then helps to effectively optimize the interference coordination range. The presented interference nulling strategy can achieve performance gains about 35–40% compared with the non-coordination case. The second application studies general multiuser MIMO heterogeneous networks (HetNets). Exact and asymptotic expressions of the coverage probabilities are presented, which reveal that the SIR invariance property of SISO HetNets does not hold for MIMO HetNets. Instead, the coverage probability may decrease as the network density increases. It is proved that the maximum coverage probability is achieved by activating only one tier of BSs, while the maximum ASE is achieved by activating all the BSs. This reveals a unique trade-off between the ASE and link reliability in multiuser MIMO HetNets. To achieve the maximum ASE while guaranteeing a certain link reliability, efficient algorithms are provided to find the optimal BS densities.


  1. 1.
    J.G. Andrews, F. Baccelli, R.K. Ganti, A tractable approach to coverage and rate in cellular networks. IEEE Trans. Commun. 59, 3122–3134 (2011)CrossRefGoogle Scholar
  2. 2.
    D. Gesbert, S. Hanly, H. Huang, S.S. Shitz, O. Simeone, W. Yu, Multi-cell MIMO cooperative networks: a new look at interference. IEEE J. Sel. Areas Commun. 28, 1380–1408 (2010)CrossRefGoogle Scholar
  3. 3.
    J. Zhang, R. Chen, J.G. Andrews, A. Ghosh, R.W. Heath Jr., Networked MIMO with clustered linear precoding. IEEE Trans. Wirel. Commun. 8, 1910–1921 (2009)CrossRefGoogle Scholar
  4. 4.
    D. López-Pérez, I. Guvenc, G. de la Roche, M. Kountouris, T.Q.S. Quek, J. Zhang, Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wirel. Commun. 18, 22–30 (2011)CrossRefGoogle Scholar
  5. 5.
    G.J. Foschini, K. Karakayali, R.A. Valenzuela, Coordinating multiple antenna cellular networks to achieve enormous spectral efficiency. IEE Proc. Commun. 153, 548–555 (2006)Google Scholar
  6. 6.
    H. Huh, A.M. Tulino, G. Caire, Network MIMO with linear zero-forcing beamforming: large system analysis, impact of channel estimation, and reduced-complexity scheduling. IEEE Trans. Inf. Theory 58, 2911–2934 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    E. Björnson, E. Jorswieck, Optimal resource allocation in coordinated multi-cell systems. Found. Trends Commun. Inf. Theory 9, 113–381 (2013)CrossRefGoogle Scholar
  8. 8.
    J. Zhang, J.G. Andrews, Adaptive spatial intercell interference cancellation in multicell wireless networks. IEEE J. Sele. Areas Commun. 28, 1455–1468 (2010)CrossRefGoogle Scholar
  9. 9.
    R. Bhagavatula, R.W. Heath Jr., Adaptive bit partitioning for multicell intercell interference nulling with delayed limited feedback. IEEE Trans. Signal Process. 59, 3824–3836 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Akoum, R.W. Heath Jr., Interference coordination: random clustering and adaptive limited feedback. IEEE Trans. Signal Process. 61, 1822–1834 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    K. Huang, J.G. Andrews, An analytical framework for multicell cooperation via stochastic geometry and large deviations. IEEE Trans. Inf. Theory 59, 2501–2516 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    R. Tanbourgi, S. Singh, J.G. Andrews, F.K. Jondral, A tractable model for noncoherent joint-transmission base station cooperation. IEEE Trans. Wirel. Commun. 13, 4959–4973 (2014)CrossRefGoogle Scholar
  13. 13.
    G. Nigam, P. Minero, M. Haenggi, Coordinated multipoint joint transmission in heterogeneous networks. IEEE Trans. Commun. 62, 4134–4146 (2014)CrossRefGoogle Scholar
  14. 14.
    X. Zhang, M. Haenggi, A stochastic geometry analysis of inter-cell interference coordination and intra-cell diversity. IEEE Trans. Wirel. Commun. 13, 6655–6669 (2014)CrossRefGoogle Scholar
  15. 15.
    P. Xia, C. Liu, J.G. Andrews, Downlink coordinated multi-point with overhead modeling in heterogeneous cellular networks. IEEE Trans. Wirel. Commun. 12, 4025–4037 (2013)CrossRefGoogle Scholar
  16. 16.
    C. Li, J. Zhang, M. Haenggi, K.B. Letaief, User-centric intercell interference nulling for downlink small cell networks. IEEE Trans. Commun. 63, 1419–1431 (2015)CrossRefGoogle Scholar
  17. 17.
    N. Jindal, J.G. Andrews, S. Weber, Multi-antenna communication in ad hoc networks: achieving MIMO gains with SIMO transmission. IEEE Trans. Commun. 59, 529–540 (2011)CrossRefGoogle Scholar
  18. 18.
    S.M. Yu, S. Kim, Downlink capacity and base station density in cellular networks, in IEEE International Symposium on WiOpt (May 2013), pp. 119–124Google Scholar
  19. 19.
    D.J. Love, R.W. Heath Jr., V.K.N. Lau, D. Gesbert, B.D. Rao, M. Andrews, An overview of limited feedback in wireless communication systems. IEEE J. Sel. Areas Commun. 26, 1341–1365 (2008)CrossRefGoogle Scholar
  20. 20.
    N. Jindal, MIMO broadcast channels with finite-rate feedback. IEEE Trans. Inf. Theory 52, 5045–5060 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    I. Hwang, B. Song, S.S. Soliman, A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Commun. Mag. 51, 20–27 (2013)CrossRefGoogle Scholar
  22. 22.
    A. Ghosh, N. Mangalvedhe, R. Ratasuk, B. Mondal, M. Cudak, E. Visotsky, T.A. Thomas, J.G. Andrews, P. Xia, H.S. Jo, H.S. Dhillon, T.D. Novlan, Heterogeneous cellular networks: from theory to practice. IEEE Commun. Mag. 50, 54–64 (2012)CrossRefGoogle Scholar
  23. 23.
    G. Bartoli, R. Fantacci, K.B. Letaief, D. Marabissi, N. Privitera, M. Pucci, J. Zhang, Beamforming for small cell deployment in LTE-advanced and beyond. IEEE Wirel. Commun. 21, 50–56 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Singh, H.S. Dhillon, J.G. Andrews, Offloading in heterogeneous networks: modeling, analysis, and design insights. IEEE Trans. Wirel. Commun. 12, 2484–2497 (2013)CrossRefGoogle Scholar
  25. 25.
    C. Li, J. Zhang, J.G. Andrews, K.B. Letaief, Success probability and area spectral efficiency in multiuser MIMO HetNets. IEEE Trans. Commun. 64, 1544–1556 (2016)CrossRefGoogle Scholar
  26. 26.
    H.S. Jo, Y.J. Sang, P. Xia, J.G. Andrews, Heterogeneous cellular networks with flexible cell association: a comprehensive downlink SINR analysis. IEEE Trans. Wirel. Commun. 11, 3484–3495 (2012)CrossRefGoogle Scholar
  27. 27.
    A. Ghosh, J. Zhang, J.G. Andrews, R. Muhamed, Fundamentals of LTE (Pearson Education, 2010)Google Scholar
  28. 28.
    H.S. Dhillon, M. Kountouris, J.G. Andrews, Downlink MIMO HetNets: modeling, ordering results and performance analysis. IEEE Trans. Wirel. Commun. 12, 5208–5222 (2013)CrossRefGoogle Scholar
  29. 29.
    V. Chandrasekhar, M. Kountouris, J.G. Andrews, Coverage in multi-antenna two-tier networks. IEEE Trans. Wirel. Commun. 8, 5314–5327 (2009)CrossRefGoogle Scholar
  30. 30.
    M. Kountouris, J.G. Andrews, Downlink SDMA with limited feedback in interference-limited wireless networks. IEEE Trans. Wirel. Commun. 11, 2730–2741 (2012)Google Scholar
  31. 31.
    K. Hosseini, W. Yu, R.S. Adve, Large-scale MIMO versus network MIMO for multicell interference mitigation. IEEE J. Sel. Topics Signal Process. 8, 930–941 (2014)CrossRefGoogle Scholar
  32. 32.
    H.S. Dhillon, R.K. Ganti, F. Baccelli, J.G. Andrews, Modeling and analysis of \(K\)-tier downlink heterogeneous cellular networks. IEEE J. Sel. Areas Commun. 30, 550–560 (2012)CrossRefGoogle Scholar
  33. 33.
    S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge U.K., 2004)Google Scholar
  34. 34.
    G. Auer, V. Giannini, C. Desset, I. Godor, P. Skillermark, M. Olsson, M.A. Imran, D. Sabella, M.J. Gonzalez, O. Blume, A. Fehske, How much energy is needed to run a wireless network? IEEE Wirel. Commun. 18, 40–49 (2011)CrossRefGoogle Scholar
  35. 35.
    W. Dinkelbach, On nonlinear fractional programming. Manag. Sci. 13(7), 492–498 (1967)MathSciNetCrossRefGoogle Scholar
  36. 36.
    F. Facchinei, S. Sagratella, G. Scutari, Flexible parallel algorithms for big data optimization, in IEEE International Conference on Acoustics, Speech, and Signal Process. (ICASSP) (May 2014), pp. 7208–7212Google Scholar
  37. 37.
    M. Haenggi, Stochastic Geometry for Wireless Networks (Cambridge University Press, Cambridge, U.K., 2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xianghao Yu
    • 1
  • Chang Li
    • 1
  • Jun Zhang
    • 2
  • Khaled B. Letaief
    • 1
  1. 1.Department of Electronic and Computer EngineeringHong Kong University of Science and TechnologyHong KongChina
  2. 2.Department of Electronic and Information EngineeringHong Kong Polytechnic UniversityKowloon, Hong KongChina

Personalised recommendations