Advertisement

Introduction

  • Xianghao Yu
  • Chang Li
  • Jun Zhang
  • Khaled B. Letaief
Chapter

Abstract

This chapter starts with the latest trends in wireless network evolution and introduces different modeling and analysis techniques for network performance evaluation. The evolution of cellular networks is first presented. Then three unique characteristics of the latest cellular standard, i.e., the fifth generation (5G) network, are illustrated. Through the discussion, it is revealed that network densification and multi-antenna transmissions are two main enabling techniques to achieve the targets of 5G, which motivates the main theme of this monograph, i.e., performance analysis of large-scale multi-antenna wireless networks. Next, an overview of network modeling and analysis is introduced, followed by the outline of the monograph.

References

  1. 1.
    C. Smith, 3G wireless networks (McGraw-Hill, Inc., 2006)Google Scholar
  2. 2.
    A. Ghosh, J. Zhang, J.G. Andrews, R. Muhamed, Fundamentals of LTE (Pearson Education, 2010)Google Scholar
  3. 3.
    J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C.K. Soong, J.C. Zhang, What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)CrossRefGoogle Scholar
  4. 4.
    Cisco visual networking index: Forecast and methodology, 2016–2021 (2017)Google Scholar
  5. 5.
    Q.C. Li, H. Niu, A.T. Papathanassiou, G. Wu, 5G network capacity: key elements and technologies. IEEE Veh. Techn. Mag. 9, 71–78 (2014)Google Scholar
  6. 6.
    C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H.M. Aggoune, H. Haas, S. Fletcher, E. Hepsaydir, Cellular architecture and key technologies for 5g wireless communication networks. IEEE Commun. Mag. 52, 122–130 (2014)Google Scholar
  7. 7.
    R. Vannithamby, S. Talwar, Low-latency radio-interface perspectives for Smallcell 5G networks (Wiley, 2017)Google Scholar
  8. 8.
    J. Pilz, M. Mehlhose, T. Wirth, D. Wieruch, B. Holfeld, T. Haustein, A tactile internet demonstration: 1 ms ultra low delay for wireless communications towards 5G, in IEEE Conference Computer Communications Workshops, pp. 862–863, Apr. 2016Google Scholar
  9. 9.
    N. Bhushan, J. Li, D. Malladi, R. Gilmore, D. Brenner, A. Damnjanovic, R.T. Sukhavasi, C. Patel, S. Geirhofer, Network densification: the dominant theme for wireless evolution into 5G. IEEE Commun. Mag. 52, 82–89 (2014)Google Scholar
  10. 10.
    X. Ge, S. Tu, G. Mao, C. Wang, T. Han, 5G ultra-dense cellular networks. IEEE Wirel. Commun. 23, 72–79 (2016)Google Scholar
  11. 11.
    J. Hoadley, P. Maveddat, Enabling small cell deployment with HetNet. IEEE Wirel. Commun. 19, 4–5 (2012)Google Scholar
  12. 12.
    I. Hwang, B. Song, S.S. Soliman, A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Commun. Mag. 51, 20–27 (2013)Google Scholar
  13. 13.
    J.G. Andrews, F. Baccelli, R.K. Ganti, A tractable approach to coverage and rate in cellular networks. IEEE Trans. Commun. 59, 3122–3134 (2011)Google Scholar
  14. 14.
    H.S. Dhillon, R.K. Ganti, F. Baccelli, J.G. Andrews, Modeling and analysis of \(K\)-tier downlink heterogeneous cellular networks. IEEE J. Sel. Areas Commun. 30, 550–560 (2012)Google Scholar
  15. 15.
    A. Paulraj, R. Nabar, D. Gore, Introduction to space-time wireless communications (Cambridge University Press, 2003)Google Scholar
  16. 16.
    E.G. Larsson, O. Edfors, F. Tufvesson, T.L. Marzetta, Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52, 186–195 (2014)Google Scholar
  17. 17.
    L. Lu, G.Y. Li, A.L. Swindlehurst, A. Ashikhmin, R. Zhang, An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Topics Signal Process. 8, 742–758 (2014)Google Scholar
  18. 18.
    D.J. Love, J. Choi, P. Bidigare, A closed-loop training approach for massive MIMO beamforming systems, in 2013 47th Annual Conference on Information Sciences and Systems (CISS), pp. 1–5, Mar. 2013Google Scholar
  19. 19.
    O. Elijah, C.Y. Leow, T.A. Rahman, S. Nunoo, S.Z. Iliya, A comprehensive survey of pilot contamination in massive MIMO–5G system. IEEE Commun. Surv. Tuts. 18, 905–923 (2016) (2nd Quart.)Google Scholar
  20. 20.
    T.L. Marzetta, Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9, 3590–3600 (2010)Google Scholar
  21. 21.
    F. Rusek, D. Persson, B.K. Lau, E.G. Larsson, T.L. Marzetta, O. Edfors, F. Tufvesson, Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process. Mag. 30, 40–60 (2013)Google Scholar
  22. 22.
    J. Choi, D.J. Love, T. Kim, Trellis-extended codebooks and successive phase adjustment: A path from LTE-advanced to FDD massive MIMO systems. IEEE Trans. Wirel. Commun. 14, 2007–2016 (2015)Google Scholar
  23. 23.
    T.S. Rappaport, R.W. Heath Jr., R.C. Daniels, J.N. Murdock, Millimeter wave wireless communications (Pearson Education, 2014)Google Scholar
  24. 24.
    S. Hur, T. Kim, D.J. Love, J.V. Krogmeier, T.A. Thomas, A. Ghosh, Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans. Commun. 61, 4391–4403 (2013)Google Scholar
  25. 25.
    E. Torkildson, U. Madhow, M. Rodwell, Indoor millimeter wave MIMO: Feasibility and performance. IEEE Trans. Wirel. Commun. 10, 4150–4160 (2011)Google Scholar
  26. 26.
    M.R. Akdeniz, Y. Liu, M.K. Samimi, S. Sun, S. Rangan, T.S. Rappaport, E. Erkip, Millimeter wave channel modeling and cellular capacity evaluation. IEEE J. Sel. Areas Commun. 32, 1164–1179 (2014)Google Scholar
  27. 27.
    O.E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, R.W. Heath Jr., Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. Wirel. Commun. 13, 1499–1513 (2014)Google Scholar
  28. 28.
    X. Yu, J. Shen, J. Zhang, K.B. Letaief, Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J. Sel. Topics Signal Process. 10, 485–500 (2016)Google Scholar
  29. 29.
    C.N. Barati, S.A. Hosseini, M. Mezzavilla, T. Korakis, S.S. Panwar, S. Rangan, M. Zorzi, Initial access in millimeter wave cellular systems. IEEE Trans. Wirel. Commun. 15, 7926–7940 (2016)Google Scholar
  30. 30.
    Z. Gao, C. Hu, L. Dai, Z. Wang, Channel estimation for millimeter-wave massive MIMO with hybrid precoding over frequency-selective fading channels. IEEE Commun. Lett. 20, 1259–1262 (2016)Google Scholar
  31. 31.
    T.S. Rappaport, Wireless communications: principles and practice, vol. 2. Prentice Hall PTR New Jersey, 1996Google Scholar
  32. 32.
    R. Nasri, A. Jaziri, Tractable approach for hexagonal cellular network model and its comparison to poisson point process, in IEEE Global Communications Conference (GLOBECOM), pp. 1–6, Dec. 2015Google Scholar
  33. 33.
    A.D. Wyner, Shannon-theoretic approach to a Gaussian cellular multiple-access channel. IEEE Trans. Inf. Theor. 40, 1713–1727 (1994)Google Scholar
  34. 34.
    O. Somekh, S. Shamai, Shannon-theoretic approach to a gaussian cellular multiple-access channel with fading. IEEE Trans. Inf. Theor. 46, 1401–1425 (2000)Google Scholar
  35. 35.
    A.J. Viterbi, A.M. Viterbi, E. Zehavi, Other-cell interference in cellular power-controlled CDMA. IEEE Trans. Commun. 42, 1501–1504 (1994)Google Scholar
  36. 36.
    J. Xu, J. Zhang, J.G. Andrews, On the accuracy of the Wyner model in cellular networks. IEEE Trans. Wirel. Commun. 10, 3098–3109 (2011)Google Scholar
  37. 37.
    P. Gupta, P.R. Kumar, The capacity of wireless networks. IEEE Trans. Inf. Theor. 46, 388–404 (2000)Google Scholar
  38. 38.
    M. Grossglauser, D.N.C. Tse, Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Trans. Netw. 10, 477–486 (2002)Google Scholar
  39. 39.
    X. Descombes, Stochastic geometry for image analysis (John Wiley & Sons, 2013)Google Scholar
  40. 40.
    M. Haenggi, Stochastic geometry for wireless networks (Cambridge University Press, Cambridge, U.K., 2012)CrossRefGoogle Scholar
  41. 41.
    F. Baccelli, B. Błaszczyszyn, Stochastic geometry and wireless networks: volume I theory (vol. 3. Now Publishers Inc., 2009)Google Scholar
  42. 42.
    A.M. Hunter, J.G. Andrews, S. Weber, Transmission capacity of ad hoc networks with spatial diversity. IEEE Trans. Wirel. Commun. 7, 5058–5071 (2008)Google Scholar
  43. 43.
    S.P. Weber, X. Yang, J.G. Andrews, G. de Veciana, Transmission capacity of wireless ad hoc networks with outage constraints. IEEE Trans Inf. Theory 51, 4091–4102 (2005)Google Scholar
  44. 44.
    W.C. Cheung, T.Q.S. Quek, M. Kountouris, Throughput optimization, spectrum allocation, and access control in two-tier femtocell networks. IEEE J. Sel. Areas Commun. 30, 561–574 (2012)Google Scholar
  45. 45.
    T.D. Novlan, R.K. Ganti, A. Ghosh, J.G. Andrews, Analytical evaluation of fractional frequency reuse for OFDMA cellular networks. IEEE Trans. Wirel. Commun. 10, 4294–4305 (2011)Google Scholar
  46. 46.
    C. Li, J. Zhang, K.B. Letaief, Throughput and energy efficiency analysis of small cell networks with multi-antenna base stations. IEEE Trans. Wirel. Commun. 13, 2505–2517 (2014)Google Scholar
  47. 47.
    C. Li, J. Zhang, J.G. Andrews, K.B. Letaief, Success probability and area spectral efficiency in multiuser MIMO HetNets. IEEE Trans. Commun. 64, 1544–1556 (2016)Google Scholar
  48. 48.
    C. Li, J. Zhang, M. Haenggi, K.B. Letaief, User-centric intercell interference nulling for downlink small cell networks. IEEE Trans. Commun. 63, 1419–1431 (2015)Google Scholar
  49. 49.
    X. Yu, C. Li, J. Zhang, K.B. Letaief, A tractable framework for performance analysis of dense multi-antenna networks, in Proceedings of IEEE International Conference Communications (ICC), (Paris, France), pp. 1–6, May 2017Google Scholar
  50. 50.
    X. Yu, C. Li, J. Zhang, M. Haenggi, K.B. Letaief, A unified framework for the tractable analysis of multi-antenna wireless networks. IEEE Trans. Wirel. Commun. 17, 7965–7980 (2018)Google Scholar
  51. 51.
    S. Weber, J.G. Andrews, Transmission capacity of wireless networks (vol. 5. Now Publishers Inc., 2012)Google Scholar
  52. 52.
    H.H. Yang, T.Q. Quek, Massive MIMO meets small cell: backhaul and cooperation (Springer, 2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xianghao Yu
    • 1
  • Chang Li
    • 1
  • Jun Zhang
    • 2
  • Khaled B. Letaief
    • 1
  1. 1.Department of Electronic and Computer EngineeringHong Kong University of Science and TechnologyHong KongChina
  2. 2.Department of Electronic and Information EngineeringHong Kong Polytechnic UniversityKowloon, Hong KongChina

Personalised recommendations