Advertisement

Molecular Diagnostics in Colorectal Cancer

  • Sandeep AgrawalEmail author
  • Aditi Bhattacharya
  • Janvie Manhas
  • Sudip Sen
Chapter

Abstract

Colorectal cancer (CRC) is a complex disease with at least three distinct molecular pathways of carcinogenesis termed as chromosomal instability (CIN), microsatellite instability (MSI) and CpG island methylator phenotype (CIMP). Most CRC cases are sporadic while hereditary nonpolyposis colorectal cancer (HNPCC) and familial adenomatous polyposis (FAP) represent the inherited tumor syndromes. CRC is mostly asymptomatic until disease progression and most of the CRC cases are detected at advanced stages, responsible for poor survival and high mortality. Many efforts have been made to study the molecular patterns of CRC and there is growing evidence to suggest how they affect the tumor characteristics, prognosis and response to therapy. Identification of MSI status of CRC is indispensable for diagnosing Lynch syndrome while detecting KRAS mutation in metastatic disease predicts response to anti-EGFR monoclonal antibodies. Currently CRC screening and diagnosis is largely based on colonoscopy while fecal occult blood tests (FOBT) and serum based carcinoembryonic antigen (CEA) assays lack sensitivity and specificity. PCR based techniques, DNA sequencing and immunohistochemistry are mainstay of studying molecular patterns of CRC.

Keywords

Colorectal cancer Molecular diagnostics Chromosomal instability Microsatellite instability Lynch syndrome Tumor marker 

References

  1. 1.
    Globocan Database. International Agency for Research on Cancer. 2012. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx?cancer=colorectal. Accessed 18 Feb 2018.
  2. 2.
    Colorectal cancer facts & figures 2014-2016. 2014. American Cancer Society. Atlanta.Google Scholar
  3. 3.
    Lindor NM. Familial colorectal cancer type X: the other half of hereditary nonpolyposis colon cancer syndrome. Surg Oncol Clin N Am. 2009;18(4):637–45.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Wei EK, Giovannucci E, Wu K, Rosner B, Fuchs CS, Willett WC, et al. Comparison of risk factors for colon and rectal cancer. Int J Cancer. 2004;108(3):433–42.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology. 2007;50(1):113–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.PubMedCrossRefGoogle Scholar
  7. 7.
    Shibata D, Schaeffer J, Li ZH, Capella G, Perucho M. Genetic heterogeneity of the c-K-ras locus in colorectal adenomas but not in adenocarcinomas. J Natl Cancer Inst. 1993;85(13):1058–63.PubMedCrossRefGoogle Scholar
  8. 8.
    Tortola S, Marcuello E, Gonzalez I, Reyes G, Arribas R, Aiza G, et al. p53 and K-ras gene mutations correlate with tumor aggressiveness but are not of routine prognostic value in colorectal cancer. J Clin Oncol. 1999;17(5):1375–81.PubMedCrossRefGoogle Scholar
  9. 9.
    Takayama T, Ohi M, Hayashi T, Miyanishi K, Nobuoka A, Nakajima T, et al. Analysis of K-ras, APC, and beta-catenin in aberrant crypt foci in sporadic adenoma, cancer, and familial adenomatous polyposis. Gastroenterology. 2001;121(3):599–611.PubMedCrossRefGoogle Scholar
  10. 10.
    Roth AD, Tejpar S, Delorenzi M, Yan P, Fiocca R, Klingbiel D, et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol. 2010;28(3):466–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008;26(35):5705–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Richman SD, Seymour MT, Chambers P, Elliott F, Daly CL, Meade AM, et al. KRAS and BRAF mutations in advanced colorectal cancer are associated with poor prognosis but do not preclude benefit from oxaliplatin or irinotecan: results from the MRC FOCUS trial. J Clin Oncol. 2009;27(35):5931–7.PubMedCrossRefGoogle Scholar
  13. 13.
    De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11(8):753–62.CrossRefPubMedGoogle Scholar
  14. 14.
    Samowitz WS, Sweeney C, Herrick J, Albertsen H, Levin TR, Murtaugh MA, et al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 2005;65(14):6063–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Deng G, Bell I, Crawley S, Gum J, Terdiman JP, Allen BA, et al. BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin Cancer Res. 2004;10(1 Pt 1):191–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Spirio LN, Samowitz W, Robertson J, Robertson M, Burt RW, Leppert M, et al. Alleles of APC modulate the frequency and classes of mutations that lead to colon polyps. Nat Genet. 1998;20(4):385–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Lamlum H, Ilyas M, Rowan A, Clark S, Johnson V, Bell J, et al. The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson’s ‘two-hit’ hypothesis. Nat Med. 1999;5(9):1071–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science. 1997;275(5307):1784–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997;275(5307):1787–90.PubMedCrossRefGoogle Scholar
  20. 20.
    Goss KH, Groden J. Biology of the adenomatous polyposis coli tumor suppressor. J Clin Oncol. 2000;18(9):1967–79.PubMedCrossRefGoogle Scholar
  21. 21.
    Kim PJ, Plescia J, Clevers H, Fearon ER, Altieri DC. Survivin and molecular pathogenesis of colorectal cancer. Lancet. 2003;362(9379):205–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C, et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol. 2001;3(4):433–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Schepers A, Clevers H. Wnt signaling, stem cells, and cancer of the gastrointestinal tract. Cold Spring Harb Perspect Biol. 2012;4(4):a007989.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.CrossRefGoogle Scholar
  25. 25.
    Rawson JB, Manno M, Mrkonjic M, Daftary D, Dicks E, Buchanan DD, et al. Promoter methylation of Wnt antagonists DKK1 and SFRP1 is associated with opposing tumor subtypes in two large populations of colorectal cancer patients. Carcinogenesis. 2011;32(5):741–7.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358(6381):15–6.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319(9):525–32.PubMedCrossRefGoogle Scholar
  28. 28.
    Soussi T. The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann N Y Acad Sci. 2000;910:121–37; discussion 37–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Baker SJ, Preisinger AC, Jessup JM, Paraskeva C, Markowitz S, Willson JK, et al. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res. 1990;50(23):7717–22.PubMedGoogle Scholar
  30. 30.
    Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991;51(23 Pt 1):6304–11.PubMedGoogle Scholar
  31. 31.
    Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci U S A. 1992;89(16):7491–5.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Woods DB, Vousden KH. Regulation of p53 function. Exp Cell Res. 2001;264(1):56–66.PubMedCrossRefGoogle Scholar
  33. 33.
    Hedrick L, Cho KR, Fearon ER, Wu TC, Kinzler KW, Vogelstein B. The DCC gene product in cellular differentiation and colorectal tumorigenesis. Genes Dev. 1994;8(10):1174–83.PubMedCrossRefGoogle Scholar
  34. 34.
    Chan SS, Zheng H, Su MW, Wilk R, Killeen MT, Hedgecock EM, et al. UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell. 1996;87(2):187–95.PubMedCrossRefGoogle Scholar
  35. 35.
    Thiagalingam S, Lengauer C, Leach FS, Schutte M, Hahn SA, Overhauser J, et al. Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat Genet. 1996;13(3):343–6.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Cho KR, Oliner JD, Simons JW, Hedrick L, Fearon ER, Preisinger AC, et al. The DCC gene: structural analysis and mutations in colorectal carcinomas. Genomics. 1994;19(3):525–31.PubMedCrossRefGoogle Scholar
  37. 37.
    Goyette MC, Cho K, Fasching CL, Levy DB, Kinzler KW, Paraskeva C, et al. Progression of colorectal cancer is associated with multiple tumor suppressor gene defects but inhibition of tumorigenicity is accomplished by correction of any single defect via chromosome transfer. Mol Cell Biol. 1992;12(3):1387–95.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Reiss M, Santoro V, de Jonge RR, Vellucci VF. Transfer of chromosome 18 into human head and neck squamous carcinoma cells: evidence for tumor suppression by Smad4/DPC4. Cell Growth Differ. 1997;8(4):407–15.PubMedGoogle Scholar
  39. 39.
    Riggins GJ, Thiagalingam S, Rozenblum E, Weinstein CL, Kern SE, Hamilton SR, et al. Mad-related genes in the human. Nat Genet. 1996;13(3):347–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Xie W, Rimm DL, Lin Y, Shih WJ, Reiss M. Loss of Smad signaling in human colorectal cancer is associated with advanced disease and poor prognosis. Cancer J. 2003;9(4):302–12.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhou XP, Woodford-Richens K, Lehtonen R, Kurose K, Aldred M, Hampel H, et al. Germline mutations in BMPR1A/ALK3 cause a subset of cases of juvenile polyposis syndrome and of Cowden and Bannayan-Riley-Ruvalcaba syndromes. Am J Hum Genet. 2001;69(4):704–11.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58(22):5248–57.PubMedGoogle Scholar
  43. 43.
    Syngal S, Weeks JC, Schrag D, Garber JE, Kuntz KM. Benefits of colonoscopic surveillance and prophylactic colectomy in patients with hereditary nonpolyposis colorectal cancer mutations. Ann Intern Med. 1998;129(10):787–96.PubMedCrossRefGoogle Scholar
  44. 44.
    Shibata D, Peinado MA, Ionov Y, Malkhosyan S, Perucho M. Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nat Genet. 1994;6(3):273–81.PubMedCrossRefGoogle Scholar
  45. 45.
    Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997;57(5):808–11.PubMedGoogle Scholar
  46. 46.
    Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 1995;268(5215):1336–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363(6429):558–61.PubMedCrossRefGoogle Scholar
  48. 48.
    Fujiwara T, Stolker JM, Watanabe T, Rashid A, Longo P, Eshleman JR, et al. Accumulated clonal genetic alterations in familial and sporadic colorectal carcinomas with widespread instability in microsatellite sequences. Am J Pathol. 1998;153(4):1063–78.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Legolvan MP, Taliano RJ, Resnick MB. Application of molecular techniques in the diagnosis, prognosis and management of patients with colorectal cancer: a practical approach. Hum Pathol. 2012;43(8):1157–68.PubMedCrossRefGoogle Scholar
  50. 50.
    Kanwal R, Gupta S. Epigenetic modifications in cancer. Clin Genet. 2012;81(4):303–11.PubMedCrossRefGoogle Scholar
  51. 51.
    Kanthan R, Senger JL, Kanthan SC. Molecular events in primary and metastatic colorectal carcinoma: a review. Patholog Res Int. 2012;2012:597497.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Pursell ZF, Isoz I, Lundstrom EB, Johansson E, Kunkel TA. Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science. 2007;317(5834):127–30.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Rayner E, van Gool IC, Palles C, Kearsey SE, Bosse T, Tomlinson I, et al. A panoply of errors: polymerase proofreading domain mutations in cancer. Nat Rev Cancer. 2016;16(2):71–81.PubMedCrossRefGoogle Scholar
  54. 54.
    van Gool IC, Eggink FA, Freeman-Mills L, Stelloo E, Marchi E, de Bruyn M, et al. POLE proofreading mutations elicit an antitumor immune response in endometrial cancer. Clin Cancer Res. 2015;21(14):3347–55.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Domingo E, Freeman-Mills L, Rayner E, Glaire M, Briggs S, Vermeulen L, et al. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study. Lancet Gastroenterol Hepatol. 2016;1(3):207–16.PubMedCrossRefGoogle Scholar
  56. 56.
    De Rosa M, Pace U, Rega D, Costabile V, Duraturo F, Izzo P, et al. Genetics, diagnosis and management of colorectal cancer (Review). Oncol Rep. 2015;34(3):1087–96.PubMedCrossRefGoogle Scholar
  57. 57.
    Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351(4):337–45.PubMedCrossRefGoogle Scholar
  58. 58.
    Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369(11):1023–34.PubMedCrossRefGoogle Scholar
  59. 59.
    Kislitsin D, Lerner A, Rennert G, Lev Z. K-ras mutations in sporadic colorectal tumors in Israel: unusual high frequency of codon 13 mutations and evidence for nonhomogeneous representation of mutation subtypes. Dig Dis Sci. 2002;47(5):1073–9.PubMedCrossRefGoogle Scholar
  60. 60.
    De Roock W, De Vriendt V, Normanno N, Ciardiello F, Tejpar S. KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol. 2011;12(6):594–603.PubMedCrossRefGoogle Scholar
  61. 61.
    Fornaro L, Lonardi S, Masi G, Loupakis F, Bergamo F, Salvatore L, et al. FOLFOXIRI in combination with panitumumab as first-line treatment in quadruple wild-type (KRAS, NRAS, HRAS, BRAF) metastatic colorectal cancer patients: a phase II trial by the Gruppo Oncologico Nord Ovest (GONO). Ann Oncol. 2013;24(8):2062–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Jass JR, Walsh MD, Barker M, Simms LA, Young J, Leggett BA. Distinction between familial and sporadic forms of colorectal cancer showing DNA microsatellite instability. Eur J Cancer. 2002;38(7):858–66.PubMedCrossRefGoogle Scholar
  63. 63.
    Iacopetta B, Grieu F, Amanuel B. Microsatellite instability in colorectal cancer. Asia Pac J Clin Oncol. 2010;6(4):260–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Gryfe R, Kim H, Hsieh ET, Aronson MD, Holowaty EJ, Bull SB, et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med. 2000;342(2):69–77.CrossRefGoogle Scholar
  65. 65.
    Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 2005;23(3):609–18.PubMedCrossRefGoogle Scholar
  66. 66.
    Sinicrope FA, Rego RL, Halling KC, Foster N, Sargent DJ, La Plant B, et al. Prognostic impact of microsatellite instability and DNA ploidy in human colon carcinoma patients. Gastroenterology. 2006;131(3):729–37.PubMedCrossRefGoogle Scholar
  67. 67.
    Benatti P, Gafa R, Barana D, Marino M, Scarselli A, Pedroni M, et al. Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res. 2005;11(23):8332–40.PubMedCrossRefGoogle Scholar
  68. 68.
    Jo WS, Carethers JM. Chemotherapeutic implications in microsatellite unstable colorectal cancer. Cancer Biomark. 2006;2(1–2):51–60.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Jover R, Castells A, Llor X, Andreu M. Predictive value of microsatellite instability for benefit from adjuvant fluorouracil chemotherapy in colorectal cancer. Gut. 2006;55(12):1819–20.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Guastadisegni C, Colafranceschi M, Ottini L, Dogliotti E. Microsatellite instability as a marker of prognosis and response to therapy: a meta-analysis of colorectal cancer survival data. Eur J Cancer. 2010;46(15):2788–98.PubMedCrossRefGoogle Scholar
  71. 71.
    Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349(3):247–57.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Bertagnolli MM, Niedzwiecki D, Compton CC, Hahn HP, Hall M, Damas B, et al. Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: Cancer and Leukemia Group B Protocol 89803. J Clin Oncol. 2009;27(11):1814–21.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Fallik D, Borrini F, Boige V, Viguier J, Jacob S, Miquel C, et al. Microsatellite instability is a predictive factor of the tumor response to irinotecan in patients with advanced colorectal cancer. Cancer Res. 2003;63(18):5738–44.PubMedGoogle Scholar
  74. 74.
    French AJ, Sargent DJ, Burgart LJ, Foster NR, Kabat BF, Goldberg R, et al. Prognostic significance of defective mismatch repair and BRAF V600E in patients with colon cancer. Clin Cancer Res. 2008;14(11):3408–15.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Meyerhardt JA, Loda M, et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut. 2009;58(1):90–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Xicola RM, Llor X, Pons E, Castells A, Alenda C, Pinol V, et al. Performance of different microsatellite marker panels for detection of mismatch repair-deficient colorectal tumors. J Natl Cancer Inst. 2007;99(3):244–52.PubMedCrossRefGoogle Scholar
  77. 77.
    Shi C, Washington K. Molecular testing in colorectal cancer: diagnosis of Lynch syndrome and personalized cancer medicine. Am J Clin Pathol. 2012;137(6):847–59.PubMedCrossRefGoogle Scholar
  78. 78.
    Aaltonen LA, Peltomaki P, Mecklin JP, Jarvinen H, Jass JR, Green JS, et al. Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res. 1994;54(7):1645–8.PubMedGoogle Scholar
  79. 79.
    Lipkin SM, Wang V, Stoler DL, Anderson GR, Kirsch I, Hadley D, et al. Germline and somatic mutation analyses in the DNA mismatch repair gene MLH3: evidence for somatic mutation in colorectal cancers. Hum Mutat. 2001;17(5):389–96.PubMedCrossRefGoogle Scholar
  80. 80.
    Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348(10):919–32.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Wheeler JM, Loukola A, Aaltonen LA, Mortensen NJ, Bodmer WF. The role of hypermethylation of the hMLH1 promoter region in HNPCC versus MSI+ sporadic colorectal cancers. J Med Genet. 2000;37(8):588–92.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Issa JP. Colon cancer: it’s CIN or CIMP. Clin Cancer Res. 2008;14(19):5939–40.PubMedCrossRefGoogle Scholar
  83. 83.
    Herbst A, Kolligs FT. Detection of DNA hypermethylation in remote media of patients with colorectal cancer: new biomarkers for colorectal carcinoma. Tumour Biol. 2012;33(2):297–305.PubMedCrossRefGoogle Scholar
  84. 84.
    Bayrak R, Yenidunya S, Haltas H. Cytokeratin 7 and cytokeratin 20 expression in colorectal adenocarcinomas. Pathol Res Pract. 2011;207(3):156–60.PubMedCrossRefGoogle Scholar
  85. 85.
    Ordonez NG. Cadherin 17 is a novel diagnostic marker for adenocarcinomas of the digestive system. Adv Anat Pathol. 2014;21(2):131–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Magnusson K, de Wit M, Brennan DJ, Johnson LB, McGee SF, Lundberg E, et al. SATB2 in combination with cytokeratin 20 identifies over 95% of all colorectal carcinomas. Am J Surg Pathol. 2011;35(7):937–48.PubMedCrossRefGoogle Scholar
  87. 87.
    Isaksson-Mettavainio M, Palmqvist R, Forssell J, Stenling R, Oberg A. SMAD4/DPC4 expression and prognosis in human colorectal cancer. Anticancer Res. 2006;26(1B):507–10.PubMedGoogle Scholar
  88. 88.
    Manhas J, Bhattacharya A, Agrawal SK, Gupta B, Das P, Deo SV, et al. Characterization of cancer stem cells from different grades of human colorectal cancer. Tumour Biol. 2016;37(10):14069–81.PubMedCrossRefGoogle Scholar
  89. 89.
    Osborn NK, Ahlquist DA. Stool screening for colorectal cancer: molecular approaches. Gastroenterology. 2005;128(1):192–206.PubMedCrossRefGoogle Scholar
  90. 90.
    Mandel JS, Bond JH, Church TR, Snover DC, Bradley GM, Schuman LM, et al. Reducing mortality from colorectal cancer by screening for fecal occult blood. Minnesota Colon Cancer Control Study. N Engl J Med. 1993;328(19):1365–71.PubMedCrossRefGoogle Scholar
  91. 91.
    Hardcastle JD, Chamberlain JO, Robinson MH, Moss SM, Amar SS, Balfour TW, et al. Randomised controlled trial of faecal-occult-blood screening for colorectal cancer. Lancet. 1996;348(9040):1472–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Kronborg O, Fenger C, Olsen J, Jorgensen OD, Sondergaard O. Randomised study of screening for colorectal cancer with faecal-occult-blood test. Lancet. 1996;348(9040):1467–71.PubMedCrossRefGoogle Scholar
  93. 93.
    Oort FA, Terhaar Sive Droste JS, Van Der Hulst RW, Van Heukelem HA, Loffeld RJ, Wesdorp IC, et al. Colonoscopy-controlled intra-individual comparisons to screen relevant neoplasia: faecal immunochemical test vs. guaiac-based faecal occult blood test. Aliment Pharmacol Ther. 2010;31(3):432–9.PubMedCrossRefGoogle Scholar
  94. 94.
    van Rossum LG, van Rijn AF, van Munster IP, Jansen JB, Fockens P, Laheij RJ, et al. Earlier stages of colorectal cancer detected with immunochemical faecal occult blood tests. Neth J Med. 2009;67(5):182–6.PubMedGoogle Scholar
  95. 95.
    Locker GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 2006;24(33):5313–27.PubMedCrossRefGoogle Scholar
  96. 96.
    Hundt S, Haug U, Brenner H. Blood markers for early detection of colorectal cancer: a systematic review. Cancer Epidemiol Biomark Prev. 2007;16(10):1935–53.CrossRefGoogle Scholar
  97. 97.
    Rossi S, Di Narzo AF, Mestdagh P, Jacobs B, Bosman FT, Gustavsson B, et al. microRNAs in colon cancer: a roadmap for discovery. FEBS Lett. 2012;586(19):3000–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58(10):1375–81.PubMedCrossRefGoogle Scholar
  99. 99.
    Timoneda O, Balcells I, Cordoba S, Castello A, Sanchez A. Determination of reference microRNAs for relative quantification in porcine tissues. PLoS One. 2012;7(9):e44413.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Nagel R, le Sage C, Diosdado B, van der Waal M, Oude Vrielink JA, Bolijn A, et al. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res. 2008;68(14):5795–802.PubMedCrossRefGoogle Scholar
  101. 101.
    Dong Y, Wu WK, Wu CW, Sung JJ, Yu J, Ng SS. MicroRNA dysregulation in colorectal cancer: a clinical perspective. Br J Cancer. 2011;104(6):893–8.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Pu XX, Huang GL, Guo HQ, Guo CC, Li H, Ye S, et al. Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol. 2010;25(10):1674–80.PubMedCrossRefGoogle Scholar
  103. 103.
    Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods. 2010;50(4):298–301.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33(20):e179.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Li W, Ruan K. MicroRNA detection by microarray. Anal Bioanal Chem. 2009;394(4):1117–24.PubMedCrossRefGoogle Scholar
  106. 106.
    Hou SY, Hsiao YL, Lin MS, Yen CC, Chang CS. MicroRNA detection using lateral flow nucleic acid strips with gold nanoparticles. Talanta. 2012;99:375–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Mao X, Xu H, Zeng Q, Zeng L, Liu G. Molecular beacon-functionalized gold nanoparticles as probes in dry-reagent strip biosensor for DNA analysis. Chem Commun (Camb). 2009;21(21):3065–7.CrossRefGoogle Scholar
  108. 108.
    He Y, Zhang S, Zhang X, Baloda M, Gurung AS, Xu H, et al. Ultrasensitive nucleic acid biosensor based on enzyme-gold nanoparticle dual label and lateral flow strip biosensor. Biosens Bioelectron. 2011;26(5):2018–24.PubMedCrossRefGoogle Scholar
  109. 109.
    de Noo ME, Mertens BJ, Ozalp A, Bladergroen MR, van der Werff MP, van de Velde CJ, et al. Detection of colorectal cancer using MALDI-TOF serum protein profiling. Eur J Cancer. 2006;42(8):1068–76.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sandeep Agrawal
    • 1
    Email author
  • Aditi Bhattacharya
    • 1
  • Janvie Manhas
    • 1
  • Sudip Sen
    • 1
  1. 1.Department of BiochemistryAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations