Advertisement

Molecular Diagnostics in Liver Cancer

  • Anil Kumar Chauhan
  • Monika Bhardwaj
  • Pankaj Kumar ChaturvediEmail author
Chapter

Abstract

Hepatocellular carcinoma (HCC or liver cancer) is emerging as the most common cancer with a conspicuous rate of mortality worldwide. The survival rate of liver cancer patients is as less as 6 months with a maximum of 2 years. Though there are various factors that cause the liver cancer, alcohol consumption and infection of hepatitis B and C are considered to be the most influential factors that contribute to the development of liver cancer. Moreover, treatment strategies are very limited due to poor diagnosis as it remains in the form of cirrhosis until it reaches to the advanced stage of carcinoma. On the other hand, transplantation of the liver is the only therapy which has shown the promising results in the patients with advanced liver cancer. However, there are numbers of research and clinical trials going on to develop some therapeutic candidate to combat this deadly disease. Moreover, there is a need to be subtler in the development of diagnostic markers specifically molecular mechanism involved in liver carcinogenesis which in turn could be used as therapeutic targets as well. The present chapter summarizes the work that has been done and is needed to improve or develop the molecular diagnosis of liver cancer.

Keywords

Hepatocellular carcinoma Molecular diagnosis Nonalcoholic fatty liver disease 

References

  1. 1.
    Jemal A, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefGoogle Scholar
  2. 2.
    Bosch FX, Ribes J, Díaz M, Cléries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology. 2004;127(5 Suppl 1):S5–S16. Review.PubMedGoogle Scholar
  3. 3.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Yu J, Shen J, Sun TT, Zhang X, Wong N. Obesity, insulin resistance, NASH and hepatocellular carcinoma. Semin Cancer Biol. 2013;23:483–91.PubMedGoogle Scholar
  5. 5.
    Torre L, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.PubMedGoogle Scholar
  6. 6.
    European Association for The Study of the Liver & European Organisation for Research and Treatment of Cancer. EASL–EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56:908–43.Google Scholar
  7. 7.
    Liu J, Fan D. Hepatitis B in China. Lancet. 2007;369:1582–3.PubMedGoogle Scholar
  8. 8.
    Mohd Hanafiah K, Groeger J, Flaxman AD, Wiersma ST. Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology. 2013;57:1333–42.PubMedGoogle Scholar
  9. 9.
    Mohamoud YA, Mumtaz GR, Riome S, Miller D, Abu-Raddad LJ. The epidemiology of hepatitis C virus in Egypt: a systematic review and data synthesis. BMC Infect Dis. 2013;13:288.PubMedPubMedCentralGoogle Scholar
  10. 10.
    El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365:1118–27.Google Scholar
  11. 11.
    National Center for Health Statistics. Health, United States, 2014: with special feature on adults aged 55–64. Hyattsville: National Center for Health Statistics; 2015.Google Scholar
  12. 12.
    Omer RE, et al. Population-attributable risk of dietary aflatoxins and hepatitis B virus infection with respect to hepatocellular carcinoma. Nutr Cancer. 2004;48:15–21.PubMedGoogle Scholar
  13. 13.
    Laursen L. A preventable cancer. Nature. 2014;516:S2–3.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Bruix J, Sherman M. AASLD Practice Guidelines: management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–2.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ott JJ, Stevens GA, Groeger J, Wiersma ST. Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine. 2012;30(12):2212–9.PubMedGoogle Scholar
  16. 16.
    Choo QL, Richman KH, Han JH, et al. Genetic organization and diversity of the hepatitis C virus. Proc Natl Acad Sci U S A. 1991;88(6):2451–5.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Asham EH, Kaseb A, Ghobrial RM. Management of hepatocellular carcinoma. Surg Clin North Am. 2013;93(6):1423–50.PubMedGoogle Scholar
  18. 18.
    Singal AK, Anand BS. Mechanisms of synergy between alcohol and hepatitis C virus. J Clin Gastroenterol. 2007;41(8):761–72.PubMedGoogle Scholar
  19. 19.
    Morgan RL, Baack B, Smith BD, Yartel A, Pitasi M, Falck-Ytter Y. Eradication of hepatitis C virus infection and the development of hepatocellular carcinoma: a meta-analysis of observational studies. Ann Intern Med. 2013;158(5):329–37.PubMedGoogle Scholar
  20. 20.
    Hassan MM, Hwang LY, Hatten CJ, et al. Risk factors for hepatocellular carcinoma: synergism of alcohol with viral hepatitis and diabetes mellitus. Hepatology. 2002;36(5):1206–13.PubMedGoogle Scholar
  21. 21.
    Gao C, Fang L, Zhao HC, Li JT, Yao SK. Potential role of diabetes mellitus in the progression of cirrhosis to hepatocellular carcinoma: a crosssectional case-control study from Chinese patients with HBV infection. Hepatobiliary Pancreat Dis Int. 2013;12(4):385–93.PubMedGoogle Scholar
  22. 22.
    Wang C, Wang X, Gong G, et al. Increased risk of hepatocellular carcinoma in patients with diabetes mellitus: a systematic review and meta-analysis of cohort studies. Int J Cancer. 2012;130(7):1639–48.PubMedGoogle Scholar
  23. 23.
    Reddy JK, Rao MS. Lipid metabolism and liver inflammation. Am J Physiol Gastrointest Liver Physiol. 2006;290:G852–8.PubMedGoogle Scholar
  24. 24.
    Wakai T, Shirai Y, Sakata J, Korita PV, Ajioka Y, Hatakeyama K. Surgical outcomes for hepatocellular carcinoma in nonalcoholic fatty liver disease. J Gastrointest Surg. 2011;15(8):1450–8.PubMedGoogle Scholar
  25. 25.
    Tokushige K, Hashimoto E, Yatsuji S, et al. Prospective study of hepatocellular carcinoma in nonalcoholic steatohepatitis in comparison with hepatocellular carcinoma caused by chronic hepatitis C. J Gastroenterol. 2010;45(9):960–7.PubMedGoogle Scholar
  26. 26.
    White DL, Tavakoli-Tabasi S, Kuzniarek J, Pascua R, Ramsey DJ, El-Serag HB. Higher serum testosterone is associated with increased risk of advanced hepatitis C-related liver disease in males. Hepatology. 2012;55(3):759–68.PubMedGoogle Scholar
  27. 27.
    Chen JG, Egner PA, Ng D, et al. Reduced aflatoxin exposure presages decline in liver cancer mortality in an endemic region of China. Cancer Prev Res. 2013;6(10):1038–45.Google Scholar
  28. 28.
    Deugnier Y, Turlin B. Iron and hepatocellular carcinoma. J Gastroenterol Hepatol. 2001;16(5):491–4.PubMedGoogle Scholar
  29. 29.
    Gandini S, Botteri E, Iodice S, Boniol M, Lowenfels AR, Maisonneuve P. Tobacco smoking and cancer: a meta-analysis. Int J Cancer. 2008;122:155–64.PubMedGoogle Scholar
  30. 30.
    Nelson WJ, Nusse R. Convergence of Wnt, β-catenin, and cadherin pathways. Science. 2004;303:1483–7.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Herbst A, Kolligs FT. Wnt signaling as a therapeutic target for cancer. Methods Mol Biol. 2007;361:63–91.PubMedGoogle Scholar
  32. 32.
    Merle P, Kim M, Herrmann M, Gupte A, Lefrançois L, Califano S, et al. Oncogenic role of the frizzled-7/beta-catenin pathway in hepatocellular carcinoma. J Hepatol. 2005;43:854–62.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Taniguchi K, Roberts LR, Aderca IN, Dong X, Qian C, Murphy LM, et al. Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene. 2002;21:4863–71.PubMedGoogle Scholar
  34. 34.
    Giaccia AJ, Kastan MB. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 1998;12:2973–83.PubMedGoogle Scholar
  35. 35.
    Hsu IC, Metcalf RA, Sun T, Welsh JA, Wang NJ, Harris CC. Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature. 1991;350:427–8.PubMedGoogle Scholar
  36. 36.
    Hsu I, Tokiwa T, Bennett W, Metcalf RA, Welsh JA, Sun T, et al. p53 gene mutation and integrated hepatitis B viral DNA sequences in human liver cancer cell lines. Carcinogenesis. 1993;14:987–92.PubMedGoogle Scholar
  37. 37.
    Hussain SP, Raja K, Amstad PA, Sawyer M, Trudel LJ, Wogan GN, et al. Increased p53 mutation load in nontumorous human liver of Wilson disease and hemochromatosis: oxyradical overload diseases. Proc Natl Acad Sci U S A. 2000;97:12770–5.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Goodrich DW. The retinoblastoma tumor-suppressor gene, the exception that proves the rule. Oncogene. 2006;25:5233–43.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Malumbres M, Barbacid M. To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer. 2001;1:222–31.PubMedGoogle Scholar
  40. 40.
    Weinberg RA. The retinoblastoma protein and cell cycle control. Cell. 1995;81:323–30.PubMedGoogle Scholar
  41. 41.
    Hsia CC, Di Bisceglie AM, Kleiner DE Jr, Farshid M, Tabor E. RB tumor suppressor gene expression in hepatocellular carcinomas from patients infected with the hepatitis B virus. J Med Virol. 1994;44:67–73.PubMedGoogle Scholar
  42. 42.
    Azechi H, Nishida N, Fukuda Y, Nishimura T, Minata M, Katsuma H, et al. Disruption of the p16/cyclin D1/retinoblastoma protein pathway in the majority of human hepatocellular carcinomas. Oncology. 2001;60:346–54.PubMedGoogle Scholar
  43. 43.
    Clark G, Quilliam LA, Hisaka MM, Der CJ. Differential antagonism of Ras biological activity by catalytic and Src homology domains of Ras GTPase activation protein. Proc Natl Acad Sci U S A. 1993;90:4887–97.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Jagirdar J, Nonomura A, Patil J, Thor A, Paronetto F. ras oncogene p21 expression in hepatocellular carcinoma. J Exp Pathol. 1989;4:37–46.PubMedGoogle Scholar
  45. 45.
    Nonomura A, Ohta G, Hayashi M, Izumi R, Watanabe K, Takayanagi N, et al. Immunohistochemical detection of ras oncogene p21 product in HEPATOLOGY, Vol. 48, No. 6, 2008 liver cirrhosis and hepatocellular carcinoma. Am J Gastroenterol. 1987;82:512–8.PubMedGoogle Scholar
  46. 46.
    Calvisi D, Ladu S, Gorden A, Farina M, Conner EA, Lee JS, et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology. 2006;130:1117–28.PubMedGoogle Scholar
  47. 47.
    Challen C, Guo K, Collier JD, Cavanagh D, Bassendine MF. Infrequent point mutations in codons 12 and 61 of ras oncogenes in human hepatocellular carcinomas. J Hepatol. 1992;14:342–6.PubMedGoogle Scholar
  48. 48.
    Cerutti P, Hussain P, Pourzand C, Aguilar F. Mutagenesis of the H-ras protooncogene and the p53 tumor suppressor gene. Cancer Res. 1994;54:1934s–8s.PubMedGoogle Scholar
  49. 49.
    Baba M, Yamamoto R, Iishi H, Tatsuta M. Ha-ras mutations in N-nitrosomorpholine-induced lesions and inhibition of hepatocarcinogenesis by antisense sequences in rat liver. Int J Cancer. 1997;72:815–20.PubMedGoogle Scholar
  50. 50.
    Bai F, Nakanishi Y, Takayama K, Pei XH, Inoue K, Harada T, et al. Codon 64 of K-ras gene mutation pattern in hepatocellular carcinomas induced by bleomycin and 1-nitropyrene in A/J mice. Teratog Carcinog Mutagen. 2003:161–70.Google Scholar
  51. 51.
    Li H, Lee GH, Liu J, Nomura K, Ohtake K, Kitagawa T. Low frequency of ras activation in 2-acetylaminofluorene and 3’-methyl-4-(dimethylamino)azobenzene-induced rat hepatocellular carcinomas. Cancer Lett. 1991;56:17–24.PubMedGoogle Scholar
  52. 52.
    Watatani M, Perantoni AO, Reed CD, Enomoto T, Wenk ML, Rice JM. Infrequent activation of K-ras, H-ras, and other oncogenes in hepatocellular neoplasms initiated by methyl (acetoxymethyl) nitrosamine, a methylating agent, and promoted by phenobarbital in F344 rats. Cancer Res. 1989;79:1103–9.Google Scholar
  53. 53.
    Morrison DK, Cutler RE. The complexity of Raf-1 regulation. Curr Opin Cell Biol. 1997;9:174–9.Google Scholar
  54. 54.
    Liao Y, Tang ZY, Liu KD, Ye SL, Huang Z. Apoptosis of human BEL-7402 hepatocellular carcinoma cells released by antisense H-ras DNA—in vitro and in vivo studies. J Cancer Res Clin Oncol. 1997;123:25–33.PubMedGoogle Scholar
  55. 55.
    Liao Y, Tang ZY, Ye SL, Liu KD, Sun FX, Huang Z. Modulation of apoptosis, tumorigenesity and metastatic potential with antisense H-ras oligodeoxynucleotides in a high metastatic tumor model of hepatoma: LCI-D20. Hepatogastroenterology. 2000;47:365–70.PubMedGoogle Scholar
  56. 56.
    Grisham JW. Interspecies comparison of liver carcinogenesis: implications for cancer risk assessment. Carcinogenesis. 1997;18:59–81.PubMedGoogle Scholar
  57. 57.
    Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors. 2006;24:21–44.PubMedGoogle Scholar
  58. 58.
    Wong CH, Cheng CY. Mitogen-activated protein kinases, adherens junction dynamics, and spermatogenesis: a review of recent data. Dev Biol. 2005;286:1–15.PubMedGoogle Scholar
  59. 59.
    Panteva M, Korkaya H, Jameel S. Hepatitis viruses and the MAPK pathway: is this a survival strategy? Virus Res. 2003;92:131–40.PubMedGoogle Scholar
  60. 60.
    Satoh T, Kaziro Y. Ras in signal transduction. Semin Cancer Biol. 1992;3:169–77.PubMedGoogle Scholar
  61. 61.
    Yoshida T, Hisamoto T, Akiba J, Koga H, Nakamura K, Tokunaga Y, et al. Spreds, inhibitors of the Ras/ERK signal transduction, are dysregulated in human hepatocellular carcinoma and linked to the malignant phenotype of tumors. Oncogene. 2006;25:6056–66.PubMedGoogle Scholar
  62. 62.
    Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE, et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet. 2001;28:29–35.PubMedGoogle Scholar
  63. 63.
    Wormald S, Hilton DJ. Inhibitors of cytokine signal transduction. J Biol Chem. 2004;279:821–4.PubMedGoogle Scholar
  64. 64.
    Nagai H, Kim YS, Konishi N, Baba M, Kubota T, Yoshimura A, et al. Combined hypermethylation and chromosome loss associated with inactivation of SSI-1/SOCS-1/JAB gene in human hepatocellular carcinomas. Cancer Lett. 2002;186:59–65.PubMedGoogle Scholar
  65. 65.
    Luk JM, Lam CT, Siu AF, Lam BY, Ng IO, Hu MY, et al. Proteomic profiling of hepatocellular carcinoma in Chinese cohort reveals heat-shock proteins (Hsp27, Hsp70, GRP78) up-regulation and their associated prognostic values. Proteomics. 2006;6:1049–57.PubMedGoogle Scholar
  66. 66.
    Breitkopf K, Haas S, Wiercinska E, Singer MV, Dooley S. Anti-TGF-beta strategies for the treatment of chronic liver disease. Alcohol Clin Exp Res. 2005;29:121S–31S.PubMedGoogle Scholar
  67. 67.
    Schulze-Bergkamen H, Fleischer B, Schuchmann M, Weber A, Weinmann A, Krammer PH, et al. Suppression of Mcl-1 via RNA interference sensitizes human hepatocellular carcinoma cells towards apoptosis induction. BMC Cancer. 2006;6:232.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Raghunand N, Gatenby RA, Gillies RJ. Microenvironmental and cellular consequences of altered blood flow in tumours. Br J Radiol. 2003;76:S11–22.PubMedGoogle Scholar
  69. 69.
    Aravalli RN, Steer CJ, Cressman EN. Molecular mechanisms of hepatocellular carcinoma. Hepatology. 2008;48(6):2047–63.PubMedGoogle Scholar
  70. 70.
    Nathan H, Pawlik TM. Staging of hepatocellular carcinoma. In: Masters KM, Vauthey J-N, editors. Hepatocellular carcinoma. Berlin: Springer. p. 69–80.Google Scholar
  71. 71.
    Bruix J, Sherman M, American Association for the Study of Liver Diseases. AASLD Practice Guideline: management of hepatocellular carcinoma: an update. Hepatology. 2011;53(2):1020–2.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Balogh J, Victor D 3rd, Asham EH, Burroughs SG, Boktour M, Saharia A, Li X, Ghobrial RM, Monsour HP Jr. Hepatocellular carcinoma: a review. J Hepatocell Carcinoma. 2016;3:41–53. eCollection 2016. Review.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Sangiovanni A, Manini MA, Iavarone M, et al. The diagnostic and economic impact of contrast imaging techniques in the diagnosis of small hepatocellular carcinoma in cirrhosis. Gut. 2010;59:638–44.PubMedGoogle Scholar
  74. 74.
    Di Bisceglie AM, Sterling RK, Chung RT, et al. Serum α-fetoprotein levels in patients with advanced hepatitis C: results from the HALT-C Trial. J Hepatol. 2005;43(3):434–41.PubMedGoogle Scholar
  75. 75.
    Masuzaki R, Omata M. Screening program in high-risk populations. In: Hepatocellular carcinoma. 2011. p. 55–68.Google Scholar
  76. 76.
    Khien VV, Mao HV, Chinh TT, et al. Clinical evaluation of lentil lectin-reactive alpha-fetoprotein-L3 in histology-proven hepatocellular carcinoma. Int J Biol Markers. 2001;16(2):105–11.PubMedGoogle Scholar
  77. 77.
    Marrero JA, Su GL, Wei W, et al. Des-γ carboxyprothrombin can differentiate hepatocellular carcinoma from nonmalignant chronic liver disease in American patients. Hepatology. 2003;37(5):1114–21.PubMedGoogle Scholar
  78. 78.
    Ishii M, Gama H, Chida N, et al. Simultaneous measurements of serumα-fetoprotein and protein induced by vitamin K absence for detecting hepatocellular carcinoma. South Tohoku District Study Group. Am J Gastroenterol. 2000;95(4):1036–40.PubMedGoogle Scholar
  79. 79.
    Forner RM, Rodriguez de Lope C, Bruix J. Current strategy for staging and treatment: the BCLC update and future prospects. Semin Liver Dis. 2010;30:61–74.PubMedGoogle Scholar
  80. 80.
    Lemmer ER, Friedman SL, Llovet JM. Molecular diagnosis of chronic liver disease and hepatocellular carcinoma: the potential of gene expression profiling. Semin Liver Dis. 2006;26(4):373–84. Review.PubMedGoogle Scholar
  81. 81.
    Morley M, Molony CM, Weber TM, et al. Genetic analysis of genome-wide variation in human gene expression. Nature. 2004;430:743–7.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Shackel NA, Gorrell MD, McCaughan GW. Gene array analysis and the liver. Hepatology. 2002;36:1313–25.PubMedGoogle Scholar
  83. 83.
    Velculescu VE, Madden SL, Zhang L, et al. Analysis of human transcriptomes. Nat Genet. 1999;23:387–8.PubMedGoogle Scholar
  84. 84.
    Kmiec Z. Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol. 2001;161:III–XIII, 1–151.PubMedGoogle Scholar
  85. 85.
    Soukas A, Socci ND, Saatkamp BD, Novelli S, Friedman JM. Distinct transcriptional profiles of adipogenesis in vivo and in vitro. J Biol Chem. 2001;276:34167–74.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Wong LY, Hafeman A, Boyd VL, et al. Assessing gene expression variation in normal human tissues using GeneTag, a novel, global, sensitive profiling method. J Biotechnol. 2003;101:199–217.PubMedGoogle Scholar
  87. 87.
    Llovet JM, Bru C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis. 1999;19:329–38.PubMedGoogle Scholar
  88. 88.
    Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362:1907–17.PubMedGoogle Scholar
  89. 89.
    Okabe H, Satoh S, Kato T, et al. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression. Cancer Res. 2001;61:2129–37.PubMedGoogle Scholar
  90. 90.
    Iizuka N, Oka M, Yamada-Okabe H, et al. Comparison of gene expression profiles between hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma by oligonucleotide microarray data on the basis of a supervised learning method. Cancer Res. 2002;62:3939–44.PubMedGoogle Scholar
  91. 91.
    Ye QH, Qin LX, Forgues M, et al. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med. 2003;9:416–23.PubMedGoogle Scholar
  92. 92.
    Nam SW, Park JY, Ramasamy A, et al. Molecular changes from dysplastic nodule to hepatocellular carcinoma through gene expression profiling. Hepatology. 2005;42:809–18.PubMedGoogle Scholar
  93. 93.
    Smith MW, Yue ZN, Geiss GK, et al. Identification of novel tumor markers in hepatitis C virus-associated hepatocellular carcinoma. Cancer Res. 2003;63:859–64.PubMedGoogle Scholar
  94. 94.
    Iizuka N, Oka M, Yamada-Okabe H, et al. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet. 2003;361:923–9.PubMedGoogle Scholar
  95. 95.
    Kurokawa Y, Matoba R, Takemasa I, et al. Molecular-based prediction of early recurrence in hepatocellular carcinoma. J Hepatol. 2004;41:284–91.PubMedGoogle Scholar
  96. 96.
    Lee JS, Chu IS, Heo J, et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology. 2004;40:667–76.PubMedGoogle Scholar
  97. 97.
    Lee JS, Heo J, Libbrecht L, et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med. 2006;12:410–6.PubMedGoogle Scholar
  98. 98.
    Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, Ambs S, Chen Y, Meltzer PS, Croce CM, Qin LX, Man K, Lo CM, Lee J, Ng IO, Fan J, Tang ZY, Sun HC, Wang XW. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med. 2009;361(15):1437–47.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Vona G, Estepa L, Béroud C, Damotte D, Capron F, Nalpas B, Mineur A, Franco D, Lacour B, Pol S, Bréchot C, Paterlini-Bréchot P. Impact of cytomorphological detection of circulating tumor cells in patients with liver cancer. Hepatology. 2004;39(3):792–7.PubMedGoogle Scholar
  100. 100.
    Vona G, Sabile A, Louha M, Sitruk V, Romana S, Schütze K, Capron F, et al. Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol. 2000;156:57–63.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Marrero JA, Lok AS. Newer markers for hepatocellular carcinoma. Gastroenterology. 2004;127(Suppl 1):S113–9.PubMedGoogle Scholar
  102. 102.
    Chuma M, Sakamoto M, Yamazaki K, et al. Expression profiling in multistage hepatocarcinogenesis: identification of HSP70 as a molecular marker of early hepatocellular carcinoma. Hepatology. 2003;37:198–207.PubMedGoogle Scholar
  103. 103.
    Paradis V, Bieche I, Dargere D, et al. Molecular profiling of hepatocellular carcinomas (HCC) using a large-scale real time RT-PCR approach: determination of a molecular diagnostic index. Am J Pathol. 2003;163:733–41.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Proceedings of the fifth annual meeting of the Japanese Committee for the International Diagnostic Criteria in Psychiatry (JCIDCP). November 2, 1985, Kyoto. Abstracts. Jpn J Psychiatry Neurol. 1986;40:701–11. [PMID: 3599569].Google Scholar
  105. 105.
    Ito T, Takada Y, Ueda M, Haga H, Maetani Y, Oike F, Ogawa K, Sakamoto S, Ogura Y, Egawa H, Tanaka K, Uemoto S. Expansion of selection criteria for patients with hepatocellular carcinoma in living donor liver transplantation. Liver Transpl. 2007;13:1637–44.  https://doi.org/10.1002/lt.21281. [PMID: 18044766].CrossRefPubMedGoogle Scholar
  106. 106.
    Waller LP, Deshpande V, Pyrsopoulos N. Hepatocellular carcinoma: a comprehensive review. World J Hepatol. 2015;7(26):2648–63.  https://doi.org/10.4254/wjh.v7.i26.2648. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Yoshizumi T, Ikegami T, Yoshiya S, Motomura T, Mano Y, Muto J, Ikeda T, Soejima Y, Shirabe K, Maehara Y. Impact of tumor size, number of tumors and neutrophil-to-lymphocyte ratio in liver transplantation for recurrent hepatocellular carcinoma. Hepatol Res. 2013;43:709–16.  https://doi.org/10.1111/hepr.12016. [PMID: 23190306].CrossRefPubMedGoogle Scholar
  108. 108.
    Zheng LY, Yang LL, Li LR, Jing HR, Wang J, Wang QF, Wang Q. [Expressions of TNF-alpha, IL-6, CRP, and MCP-1 in phlegm-damp constitution population detected by multiplexed Luminex assay]. Zhongguo Zhongxiyi Jiehe Zazhi. 2013;33:920–3. [PMID:24063213].Google Scholar
  109. 109.
    Pinato DJ, Karamanakos G, Arizumi T, Adjogatse D, Kim YW, Stebbing J, Kudo M, Jang JW, Sharma R. Dynamic changes of the inflammation-based index predict mortality following chemoembolisation for hepatocellular carcinoma: a prospective study. Aliment Pharmacol Ther. 2014;40:1270–81.  https://doi.org/10.1111/apt.12992. [PMID: 25327965].CrossRefPubMedGoogle Scholar
  110. 110.
    Garraway LA, Widlund HR, Rubin MA, et al. Integrative genomic analyses identify MITF as a line age survival oncogene amplified in malignant melanoma. Nature. 2005;436:117–22.PubMedGoogle Scholar
  111. 111.
    Sachidanandam R, Weissman D, Schmidt SC, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001;409:928–33.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Anil Kumar Chauhan
    • 1
  • Monika Bhardwaj
    • 1
  • Pankaj Kumar Chaturvedi
    • 2
    Email author
  1. 1.Laboratory of Biochemistry and Cellular EngineeringDaegu Gyeongbuk Institute of Science and TechnologyDaeguRepublic of Korea
  2. 2.Department of Radiation OncologyChungbuk National University HospitalCheongjuRepublic of Korea

Personalised recommendations