Advertisement

Molecular Biomarkers and Urinary Bladder Cancer (UBC)

  • A. N. SrivastavaEmail author
  • Kirti A. Gautam
  • S. N. Sankhwar
Chapter

Abstract

Urinary bladder cancer is the most common cancer of urinary tract. The exact etiology of urinary bladder cancer is unknown. However, exposure to various risk factors may change the susceptibility as well as patho-physiological outcome of disease among individuals. The fundamental event in cancer development is loss of genomic integrity as experimental studies dictate that genetic changes either in germ line genes or somatic genetic alteration must occur for tumor initiation as well as propagation in later stages of tumor development. Conventionally clinical and pathological methods are used for the diagnosis and clinical outcome of urinary bladder cancer. However, the prognostic ability of these methods is limited because these methods are invasive, expensive and have major complications after procedure. Therefore, the biggest challenge in front of urologist and researchers is to develop relevant protocol that is cost effective, more sensitive and a non-invasive method for diagnosis. In this chapter, we have reviewed the molecular markers and associated possible benefits of detection, surveillance and prognostication of disease as well as investigating the molecular profile of individual patient which can guide clinician into a new era of improving prediction of natural history of tumor and providing a more personalized and tailored intravesical and systemic treatment to that particular patient.

Keywords

Urinary bladder Genetic markers Molecular techniques 

References

  1. 1.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Cancer incidence and mortality worldwide: GLOBOCAN 2008 v2.0. Lyon: International Agency for Research; 2010. Report No.: IARC CancerBase No. 10.Google Scholar
  2. 2.
    Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69.CrossRefPubMedGoogle Scholar
  3. 3.
    Edwards BK, Ward E, Kohler BA, et al. Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer. 2010;116:544–73.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Karim-Kos HE, de Vries E, Soerjomataram I, et al. Recent trends of cancer in Europe: a combined approach of incidence, survival and mortality for 17 cancer sites since the 1990s. Eur J Cancer. 2008;44:1345–89.CrossRefPubMedGoogle Scholar
  5. 5.
    Burger M, Catto JW, Dalbagni G, et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol. 2013;63:234–41.CrossRefPubMedGoogle Scholar
  6. 6.
    Fajkovic H, Halpern JA, Cha EK, et al. Impact of gender on bladder cancer incidence, staging, and prognosis. World J Urol. 2011;29:457–63.CrossRefPubMedGoogle Scholar
  7. 7.
    Pelucchi C, Bosetti C, Negri E, et al. Mechanisms of disease: the epidemiology of bladder cancer. Nat Clin Pract Urol. 2006;3:327–40.CrossRefPubMedGoogle Scholar
  8. 8.
    Madeb R, Messing EM. Gender, racial and age differences in bladder cancer incidence and mortality. Urol Oncol. 2004;22:86–92.CrossRefPubMedGoogle Scholar
  9. 9.
    Underwood W 3rd, Dunn RL, Williams C, et al. Gender and geographic influence on the racial disparity in bladder cancer mortality in the US. J Am Coll Surg. 2006;202:284–90.CrossRefPubMedGoogle Scholar
  10. 10.
    Yee DS, Ishill NM, Lowrance WT, et al. Ethnic differences in bladder cancer survival. Urology. 2011;78:544–9.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Vineis P, Simonato L. Proportion of lung and bladder cancers in males resulting from occupation: a systematic approach. Arch Environ Health. 1991;46:6–15.CrossRefPubMedGoogle Scholar
  12. 12.
    Zeegers MP, Tan FE, Dorant E, et al. The impact of characteristics of cigarette smoking on urinary tract cancer risk: a meta-analysis of epidemiologic studies. Cancer. 2000;89:630–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Murata M, Tamura A, Tada M, et al. Mechanism of oxidative DNA damage induced by carcinogenic 4-aminobiphenyl. Free Radic Biol Med. 2001;30:765–73.CrossRefPubMedGoogle Scholar
  14. 14.
    Fontcuberta M, Arqués JF, Martínez M, et al. Polycyclic aromatic hydrocarbons in food samples collected in Barcelona, Spain. J Food Prot. 2006;69:2024–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Jacobsen BK, Bjelke E, Kvåle G, et al. Coffee drinking, mortality, and cancer incidence: results from a Norwegian prospective study. J Natl Cancer Inst. 1986;76:823–31.PubMedGoogle Scholar
  16. 16.
    Pelucchi C, Galeone C, Tramacere I, et al. Alcohol drinking and bladder cancer risk: a meta-analysis. Ann Oncol. 2012;23:1586–93.CrossRefPubMedGoogle Scholar
  17. 17.
    Zeegers MP, Tan FE, Verhagen AP, et al. Elevated risk of cancer of the urinary tract for alcohol drinkers: a metaanalysis. Cancer Causes Control. 1999;10:445–51.CrossRefPubMedGoogle Scholar
  18. 18.
    Pelucchi C, La Vecchia C. Alcohol, coffee, and bladder cancer risk: a review of epidemiological studies. Eur J Cancer Prev. 2009;18:62–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Takanashi H, Also S, Hirono I, et al. Carcinogenicity test of Quercetin and kaempferol in rats by oral administration. J Food Saf. 1983;5(2):55–60.CrossRefGoogle Scholar
  20. 20.
    Jankovic S, Radosavljevic V. Risk factors for bladder cancer. Tumori. 2007;93(1):4–12.CrossRefPubMedGoogle Scholar
  21. 21.
    Howe GR, Burch JD, Miller AB, et al. Tobacco use, occupation, coffee, various nutrients and bladder cancer. J Natl Cancer Inst. 1980;64:701–13.PubMedGoogle Scholar
  22. 22.
    Rehn L. Bladder tumors in Fuchsine-workers. Married Dtsch Gesellsch Chir. 1895;24:240–52.Google Scholar
  23. 23.
    Hueper WC, Wiley FH, Wolfe HD. Experimental production of bladder tumors in dogs by administration of ß-naphthylamine. J Ind Hyg Tox. 1938;20:46–84.Google Scholar
  24. 24.
    Wallace DMA. Occupational urothelial cancer. Br J Urol. 1988;61:175–82.CrossRefPubMedGoogle Scholar
  25. 25.
    Clapp RW, Jacob MM, Loechler EL. Environmental and occupational causes of cancer: new evidence 2005-2007. Rev Environ Health. 2008;23(1):1–37.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Angervall L, Bengtsson U, Zetterlund CG, et al. Renal pelvic carcinoma in a Swedish district with abuse of a phenacetin-containing drug. Br J Urol. 1969;41:401–5.CrossRefPubMedGoogle Scholar
  27. 27.
    Knight A, Askling J, Granath F, et al. Urinary bladder cancer in Wegener’s granulomatosis: risks and relation to cyclophosphamide. Ann Rheum Dis. 2004;63:1307–11.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Laursen B. Cancer of the bladder in patients treated with chlornaphazine. Br Med J. 1970;3:684–5.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    IARC. Aromatic amines, organic dyes, and related exposures. IARC Monogr Eval Carcinog Risks Hum. 2010;99:1–658.Google Scholar
  30. 30.
    IARC. Chemical agents and related occupations. IARC Monogr Eval Carcinog Risks Hum. 2012;100(Pt-F):9-562.Google Scholar
  31. 31.
    Bartsch H, Ohshima H, Pignatelli B, et al. Endogenously formed N-nitroso compounds and nitrosating agents in human cancer etiology. Pharmacogenetics. 1992;2:272–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Arlt VM, Stiborova M, Schmeiser HH. Aristolochic acid as a probable human cancer hazard in herbal remedies: a review. Mutagenesis. 2002;17:265–77.CrossRefPubMedGoogle Scholar
  33. 33.
    Goldgar DE, Easton DF, Cannon-Albright LA, et al. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst. 1994;86(21):1600–8.CrossRefGoogle Scholar
  34. 34.
    Plna K, Hemminki K. Familial bladder cancer in the National Swedish Family Cancer Database. J Urol. 2001;166:2129–33.CrossRefPubMedGoogle Scholar
  35. 35.
    Crawford JM. The origins of bladder cancer. Lab Investig. 2008;88(7):686–93.CrossRefPubMedGoogle Scholar
  36. 36.
    Hail M, Grover PL. Polycyclic aromatic hydrocarbons: metabolism, activation, and tumour initiation. In: Cooper CS, Grover PL, editors. Chemical carcinogenesis and mutagenesis. 1st ed. Berlin: Springer; 1990. p. 327–72.CrossRefGoogle Scholar
  37. 37.
    Shields PG, Harris CC. Principles of carcinogenesis: chemical. In: DeVita VT, Hellman S, Rosenberg SA, editors. Cancer: principles and practice of oncology. Chapt 11. 4th ed. Philadelphia: Lippincott; 1993. p. 200–12.Google Scholar
  38. 38.
    Kadlubar FF. DNA adducts of carcinogenic aromatic amines. IARC Sci Pub. 1994;125:199–216.Google Scholar
  39. 39.
    Robbins JR, Yang L-NL, Anderson BG, et al. Photogenerated arylnitrenium ions. Reactions of N-tertbutyl 1(2-acetyl 1±4-substituted) phenyl nitrenium ions with alcohols and water studied by laser flash photolysis. J Am Chem Soc. 1995;117:6544–52.CrossRefGoogle Scholar
  40. 40.
    Longe J. Gale encyclopedia of cancer: a guide to cancer and its treatments, vol. 137. Detroit: Thomson Gale; 2005.Google Scholar
  41. 41.
    Hall RR, Prout GR. Staging of bladder cancer: is the tumor, node, metastasis system adequate? Semin Oncol. 1990;17:517–23.PubMedGoogle Scholar
  42. 42.
    Malmstrom PU, Wijkstrom H, Thordtenson A, et al. Recurrence, progression and survival in bladder cancer: a retrospective analysis of 232 patients with greater than or equal to 5-year follow-up. Scand J Urol Nephrol. 1987;21:185–95.CrossRefPubMedGoogle Scholar
  43. 43.
    Mostofi FKDC, Sesterhnn IA. Histological typing of urinary bladder tumors. Geneva: WHO; 1999.CrossRefGoogle Scholar
  44. 44.
    Montironi R, Lopez-Beltran A. The 2004 WHO classification of bladder tumors: a summary and commentary. Int J Surg Pathol. 2005;13:143–53.CrossRefPubMedGoogle Scholar
  45. 45.
    Larsson P, Wijkstrom H, Thorstenson A, et al. A population based study of 53 patients with newly detected urinary bladder neoplasms followed during 5 years. Scand J Urol Nephrol. 2003;37:195–201.CrossRefPubMedGoogle Scholar
  46. 46.
    Sankaranarayanan R, Swaminathan R, Brenner H, et al. Cancer survival in Africa, Asia, and Central America: a population-based study. Lancet Oncol. 2010;11(2):165–73.CrossRefPubMedGoogle Scholar
  47. 47.
    Altekruse SF, Kosary CL, Krapcho M, et al., editors. SEER cancer statistics review; 1975 2007. Bethesda: National Cancer Institute. http://seer.cancer.gov/csr/1975_2007/ [based on November 2009 SEER data submission, posted to the SEER web site 2010].
  48. 48.
    Sant M, Allemani C, Santaquilani M, et al. EUROCARE working group: survival of cancer patients diagnosed in 1995–1999. Results and commentary. Eur J Cancer. 2009;45(6):931–91.CrossRefPubMedGoogle Scholar
  49. 49.
    Smith ZL, Guzzo TJ. Urinary markers of bladder cancer. F1000Prime Rep. 2013;5:5–21.CrossRefGoogle Scholar
  50. 50.
    Kim WJ, Bae SC. Molecular biomarkers in urothelial bladder cancer. Cancer Sci. 2008;99(4):646–52.CrossRefPubMedGoogle Scholar
  51. 51.
    Shariat SF, Karam JA, Lerner SP. Molecular markers in bladder cancer. Curr Opin Urol. 2008;18(1):1–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Lokeshwar VB, Habuchi T, Grossman HB, et al. Bladder tumor markers beyond cytology: International Consensus Panel on bladder tumor markers. Urology. 2005;66:35–63.CrossRefPubMedGoogle Scholar
  53. 53.
    Van RBW, Van DPHG, Van DKTH. Urine markers for bladder cancer surveillance: a systematic review. Eur Urol. 2005;47:736–48.CrossRefGoogle Scholar
  54. 54.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.CrossRefPubMedGoogle Scholar
  55. 55.
    Hanahan D, Weinberg RA. The hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCentralCrossRefGoogle Scholar
  56. 56.
    Botstein D, Risch N. Discovering genotype underlying human phenotype: past successes for mendelian disease, future approaches for complex disease. Nat Genet. 2003;33(Suppl):228–37.CrossRefPubMedGoogle Scholar
  57. 57.
    Knowles MA. What we could do now: molecular pathology of bladder cancer. Mol Pathol. 2001;54:215–21.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Fadl-Elmula I, Kytola S, Pan Y, et al. Characterization of chromosomal abnormalities in uroepithelial carcinomas by G-banding, spectral karyotyping and FISH analysis. Int J Cancer. 2001;92:824–31.CrossRefPubMedGoogle Scholar
  59. 59.
    Sardi I, Bartoletti R, Occhini I, et al. Microsatellite alterations in superficial and locally advanced transitional cell carcinoma of the bladder. Oncol Rep. 1999;6:901–5.PubMedGoogle Scholar
  60. 60.
    Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993;260:816–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Tsai YC, Nichols PW, Hiti AL, et al. Allelic losses of chromosomes 9, 11, and 17 in human bladder cancer. Cancer Res. 1990;50:44–7.PubMedGoogle Scholar
  62. 62.
    Presti JC Jr, Reuter VE, Galan T, et al. Molecular genetic alterations in superficial and locally advanced human bladder cancer. Cancer Res. 1991;51:5405–9.PubMedGoogle Scholar
  63. 63.
    Altayli E, et al. CYP1A2, CYP2D6, GSTM1, GSTP1, and GSTT1 gene polymorphisms in patients with bladder cancer in a Turkish population. Int Urol Nephrol. 2009;41(2):259–66.CrossRefPubMedGoogle Scholar
  64. 64.
    Pavanello S, et al. CYP1A2 polymorphisms, occupational and environmental exposures and risk of bladder cancer. Eur J Epidemiol. 2010;25(7):491–500.CrossRefPubMedGoogle Scholar
  65. 65.
    Tian Z, et al. Role of CYP1A2 1F polymorphism in cancer risk: evidence from a meta-analysis of 46 case-control studies. Gene. 2013;524(2):168–74.CrossRefPubMedGoogle Scholar
  66. 66.
    Tao L, et al. Cytochrome P4501A2 phenotype and bladder cancer risk: the Shanghai bladder cancer study. Int J Cancer. 2012;130(5):1174–83.CrossRefPubMedGoogle Scholar
  67. 67.
    Brockmoller J, Cascorbi I, Henning S, et al. Molecular genetics of cancer susceptibility. Pharmacology. 2000;61:212–27.CrossRefPubMedGoogle Scholar
  68. 68.
    Strange RC, Fryer AA. The glutathione S-transferases: influence of polymorphism on cancer susceptibility. In: Vineis P, Malats N, Lang M, d’Errico A, Caporaso N, Cuzick J, Boffetta P, editors. Metabolic polymorphisms and susceptibility to cancer. Lyon: IARC; 1999. p. 231–49.Google Scholar
  69. 69.
    Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemo-protection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30:445–600.CrossRefPubMedGoogle Scholar
  70. 70.
    Mishra DK, Kumar A, Srivastava DSL, et al. Allelic variation of GSTT1, GSTM1 and GSTP1 genes in north Indian population. Asian Pac J Cancer Prev. 2004;5:362–5.PubMedGoogle Scholar
  71. 71.
    Smith CM, Kelsey KT, Wiencke JK, et al. Inherited glutathione S-transferase deficiency is a risk factor for pulmonary asbestosis. Cancer Epidemiol Biomark Prev. 1994;3:471–7.Google Scholar
  72. 72.
    Shao J, Gu M, Zhang Z, et al. Genetic variants of the cytochrome P450 and glutathione S-transferase associated risk of bladder cancer in a south-eastern Chinese population. Int J Urol. 2008;15:216–21.CrossRefPubMedGoogle Scholar
  73. 73.
    Grando JP, Kuasne H, Losi-Guembarovski R, et al. Association between polymorphisms in the biometabolism gene CYP1A1, GSTM1, GSTT1 and GSTP1 in bladder cancer. Clin Exp Med. 2009;9:21–8.CrossRefPubMedGoogle Scholar
  74. 74.
    McGrath M, Michaud D, De Vivo I. Polymorphisms in GSTT1, GSTM1, NAT1 and NAT2 genes and bladder cancer risk in men and women. BMC Cancer. 2006;6:239.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Nelson HH, Wiencke JK, Christiani DC, et al. Ethnic differences in the prevalence of the homozygous deleted genotype of glutathione S-transferase q. Carcinogenesis. 1995;16:1243–5.CrossRefPubMedGoogle Scholar
  76. 76.
    Brockmoller J, Cascorbi I, Kerb R, et al. Combined analysis of inherited polymorphisms in Arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase, and cytochrome P450 enzymes as modulators of bladder cancer risk. Cancer Res. 1996;56:3915–25.PubMedGoogle Scholar
  77. 77.
    Moore LE, Wiencke JK, Bates MN, et al. Investigation of genetic polymorphisms and smoking in a bladder cancer case- control study in Argentina. Cancer Lett. 2004;211:199–207.CrossRefPubMedGoogle Scholar
  78. 78.
    Sanyal S, Festa F, Sakano S, et al. Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis. 2004;25:729–34.CrossRefPubMedGoogle Scholar
  79. 79.
    Srivastava DS, Kumar A, Mittal RD, et al. NAT2 gene polymorphism in bladder cancer: a study from north India. Int J Hum Genet. 2004;4:201–5.CrossRefGoogle Scholar
  80. 80.
    Ali-Osmam F, Akande O, Antoun G, et al. Molecular cloning, characterization and expression in Escherichia coli of full length cDNAs of three human glutathione S-transferase pi gene variants. Evidence for different catalytic activity of the encoded protiens. J Biol Chem. 1997;272:10004–12.CrossRefGoogle Scholar
  81. 81.
    Wu K, Wang X, Xie Z, et al. Glutathione S-transferase P1 gene polymorphism and bladder cancer susceptibility: an updated analysis. Mol Biol Rep. 2013;40:687–95.CrossRefPubMedGoogle Scholar
  82. 82.
    Inskip A, Elexperu-Camiruaga J, Buxton N, et al. Identification of polymorphism at the glutathione S-transferase, GSTM3 locus: evidence for linkage with GSTM1*A. Biochem J. 1995;312:713–6.PubMedCentralCrossRefPubMedGoogle Scholar
  83. 83.
    Hein DW, Doll MA, Rustan TD, et al. Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic Mat2 acetyltransferases. Carcinogenesis. 1993;14:1633–8.CrossRefPubMedGoogle Scholar
  84. 84.
    Hein DW, Doll MA, Fretland AJ, et al. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomark Prev. 2000;9:29–42.Google Scholar
  85. 85.
    Jian G, Liang D, Wang Y, et al. Effects of N-acetly transferase 1 and 2 polymorphisms on bladder cancer risk in Caucasians. Mutat Res. 2005;581:97–104.CrossRefGoogle Scholar
  86. 86.
    Franekova M, Halasova E, Bukovska E, et al. Gene polymorphisms in bladder cancer. Urol Oncol. 2008;26(1):1–8.CrossRefPubMedGoogle Scholar
  87. 87.
    Carreon T, Ruder AM, Schulte PA, et al. NAT2 slow acetylation and bladder cancer in workers exposed to benzidine. Int J Cancer. 2006;118:161–8.CrossRefPubMedGoogle Scholar
  88. 88.
    Hsieh FI, Pu YS, Chern HD, et al. Genetic polymorphisms on M-acetyltransferase 1 and 2 and risk of cigarette smoking-related bladder cancer. Br J Cancer. 1999;81:537–41.PubMedCentralCrossRefPubMedGoogle Scholar
  89. 89.
    Weber WW, Hein DW. N-acetylation pharmacogenetics. Pharmacol Rev. 1985;37:25–79.PubMedGoogle Scholar
  90. 90.
    Taylor JA, Umbach DM, Stephens E, et al. The role of N-acetylation polymorphisms in smoking-associated bladder cancer: evidence of a gene-gene-exposure three-way interaction. Cancer Res. 1998;58(16):3603–10.PubMedGoogle Scholar
  91. 91.
    Hung RJ, Boffetta P, Brennan P, et al. Genetic polymorphism of MPO, COMT, MnSOD, NQO1, interaction with environmental exposures and bladder cancer risk. Carcinogenesis. 2004;25:973–8.CrossRefPubMedGoogle Scholar
  92. 92.
    Sanderson S, Salanti G, Higgins J. Joint effects of the N-acetyltransferase 1 and 2 (NAT1 and NAT2) genes and smoking on bladder carcinogenesis: a literature-based systematic HuGE review and evidence synthesis. Am J Epidemiol. 2007;166(7):741–51.CrossRefPubMedGoogle Scholar
  93. 93.
    Zheng L, Wang Y, Schabath MB, et al. Sulfotransferase 1A1 (SULT1A1) polymorphism and bladder cancer risk: a case-control study. Cancer Lett. 2003;202:61–9.CrossRefPubMedGoogle Scholar
  94. 94.
    Hu DG, Mackenzie PI, McKinnon RA, et al. Genetic polymorphisms of human UDP-glucuronosyltransferase (UGT) genes and cancer risk. Drug Metab Rev. 2016;48:47–69.CrossRefPubMedGoogle Scholar
  95. 95.
    Lin GF, Guo WC, Chen JG, et al. An association of UDPglucuronosyltransferase 2B7 C802T (His268Tyr) polymorphism with bladder cancer in benzidine-exposed workers in China. Toxicol Sci. 2005;85:502–6.CrossRefPubMedGoogle Scholar
  96. 96.
    Kadlubar FF, Butler MA, Kaderlik KR, et al. Polymorphisms for aromatic amine metabolism in humans: relevance for human carcinogenesis. Environ Health Perspect. 1992;98:69–74.PubMedCentralCrossRefPubMedGoogle Scholar
  97. 97.
    Piedrafita FJ, Molander RB, Vansant G, et al. An Alu element in the myeloperoxidase promoter contains a composite SP1-thyroid hormone-retinoic acid response element. J Biol Chem. 1996;271:14412–20.CrossRefPubMedGoogle Scholar
  98. 98.
    Zhu BT. Catechol-O-methyltransferase (COMT)-mediated methylation metabolism of endogenous bioactive catechols and modulation by endobitics and xenobiotics: importance in pathophysiology and pathogenesis. Curr Drug Metab. 2002;3:321–49.CrossRefPubMedGoogle Scholar
  99. 99.
    Lotta T, Vidgren J, Tilgmann C, et al. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry. 1995;34:4202–10.CrossRefPubMedGoogle Scholar
  100. 100.
    McCord JM. Superoxide dismutase in aging and disease: an overview. Methods Enzymol. 2002;349:331–41.CrossRefPubMedGoogle Scholar
  101. 101.
    Rosenblum JS, Gilula NB, Lerner RA. On signal sequence polymorphisms and diseases of distribution. Proc Natl Acad Sci U S A. 1996;93:4471–3.PubMedCentralCrossRefPubMedGoogle Scholar
  102. 102.
    Chada S, Whitney C, Newburger PE. Posttranscriptional regulation of glutathione peroxidase gene expression by selenium in the HL-60 human myeloid cell line. Blood. 1989;74:2535–41.PubMedGoogle Scholar
  103. 103.
    Hu YJ, Diamond AM. Role of glutathione peroxidase 1 in breast cancer: loss of heterozygosity and allelic differences in the response to selenium. Cancer Res. 2003;63:3347–51.PubMedGoogle Scholar
  104. 104.
    van Dijk B, van Houwelingen KP, Witjes JA, et al. Alcohol dehydrogenase type 3 (ADH3) and the risk of bladder cancer. Eur Urol. 2001;40:509–14.CrossRefPubMedGoogle Scholar
  105. 105.
    Zhu Z, Shen Z, Xu C. Inflammatory pathways as promising targets to increase chemotherapy response in bladder cancer. Mediat Inflamm. 2012;2012:1–11.CrossRefGoogle Scholar
  106. 106.
    Tawara K, Jorcyk C, Oxford JT. Clinical significance of interleukin (IL)-6 in cancer metastasis to bone: potential of anti-IL-6 therapies. Cancer Manag Res. 2011;3:177–89.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Scheller J, Chalaris A, Schmidt-Arras D, et al. The pro- and anti inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813:878–88.CrossRefPubMedGoogle Scholar
  108. 108.
    Li CG, Li ML, Shu XH, et al. Antitumor effects of recombinant human interleukin-6 on mouse bladder carcinoma through Fas-mediated apoptosis. Cancer Chemother Pharmacol. 2010;66(5):981–6.CrossRefPubMedGoogle Scholar
  109. 109.
    Naik DS, Sharma S, Ray A, et al. Epidermal growth factor receptor expression in urinary bladder cancer. Indian J Urol. 2011;27:208–14.PubMedCentralCrossRefPubMedGoogle Scholar
  110. 110.
    Fishman D, Faulds G, Jeffery R, et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest. 1998;102:1369–76.PubMedCentralCrossRefPubMedGoogle Scholar
  111. 111.
    Muller-Hermelink N, Braumuller H, Pichler B, et al. TNFR1 signalling and IFN-gamma signalling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell. 2008;13:507–18.CrossRefPubMedGoogle Scholar
  112. 112.
    Chu H, Ma L, Wang M, et al. The polymorphisms of IL-4, IL-4R and IL-13 genes and bladder cancer risk in a Chinese population: a case-control study. Mol Biol Rep. 2012;395:5349–57.CrossRefGoogle Scholar
  113. 113.
    Gaur P, Mittal M, Mohanti B, Das S. Functional variants of IL4 and IL6 genes and risk of tobacco-related oral carcinoma in high-risk Asian Indians. Oral Dis. 2011;17:720–6.CrossRefPubMedGoogle Scholar
  114. 114.
    Gomes M, Coelho A, Araujo A, Teixeira AL, Catarino R, Medeiros R. Influence of functional genetic polymorphism (-590C/T) in non-small cell lung cancer (NSCLC) development: the paradoxal role of IL-4. Gene. 2012;504:111–5.CrossRefPubMedGoogle Scholar
  115. 115.
    Watanable Y, Kinoshita A, Yamada T, et al. A catalog of 106 single-nucleotide polymorphisms (SNPs) and 11 other types of variations in genes for transforming growth factor-beta1 (TGF-beta1) and its signaling pathway. J Hum Genet. 2002;47:478–83.CrossRefGoogle Scholar
  116. 116.
    Alexandrow MG, Moses HL. Transforming growth factor β and cell cycle regulation. Cancer Res. 1995;55:1452–7.PubMedGoogle Scholar
  117. 117.
    Massague J. Receptors for the TGF-β family. Cell. 1992;69:1067–70.CrossRefPubMedGoogle Scholar
  118. 118.
    Parsons R, Myeroff LL, Liu B, et al. Microsatellite instability and mutations of the transforming growth factor β type II receptor gene in colorectal cancer. Cancer Res. 1995;55:5548–50.PubMedGoogle Scholar
  119. 119.
    Ding Z, Wu CJ, Chu GC, et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature. 2011;470:269–73.PubMedCentralCrossRefPubMedGoogle Scholar
  120. 120.
    Kubiczkova L, Sedlarikova L, Hajek R, et al. TGF-β—an excellent servant but a bad master. J Transl Med. 2012;10:183.PubMedCentralCrossRefPubMedGoogle Scholar
  121. 121.
    Noordhuis MG, Fehrmann RS, Wisman GB, et al. Involvement of the TGF-β and β-catenin pathways in pelvic lymph node metastasis in early-stage cervical cancer. Clin Cancer Res. 2011;17(6):1317–30.CrossRefPubMedGoogle Scholar
  122. 122.
    Gautam KA, Singh P, Sankhwar SN, et al. c.29C>T polymorphism in the transforming growth factor-β1 (TGFB1) gene correlates with increased risk of urinary bladder cancer. Cytokine. 2015;75(2):344–8.CrossRefPubMedGoogle Scholar
  123. 123.
    Joshi NN, Kale MD, Hake SS, et al. Transforming growth factor β signaling pathway associated gene polymorphisms may explain lower breast cancer risk in western Indian women. PLoS One. 2011;6(8):e21866.PubMedCentralCrossRefPubMedGoogle Scholar
  124. 124.
    Wu GY, Lu Q, Hasenberg T, et al. Association between EGF, TGF-β1, TNF-α gene polymorphisms and cancer of the pancreatic head. Anticancer Res. 2010;30:5257–62.PubMedGoogle Scholar
  125. 125.
    Balkwill F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev. 2002;13:135–41.CrossRefPubMedGoogle Scholar
  126. 126.
    Sethi G, Sung B, Aggarwal B. TNF: a master switch for inflammation to cancer. Front Biosci. 2008;13:5094–107.CrossRefPubMedGoogle Scholar
  127. 127.
    Schmiegel W, Roeder C, Schmielau J, et al. Tumor necrosis factor alpha induces the expression of transforming growth factor alpha and the epidermal growth factor receptor. Proc Natl Acad Sci U S A. 1993;90:863–7.PubMedCentralCrossRefPubMedGoogle Scholar
  128. 128.
    McDermott MF. TNF and TNFR biology in health and disease. Cell Mol Biol. 2001;47:619–35.PubMedGoogle Scholar
  129. 129.
    Azmy IAK, Balasubramanian SP, Wilson AG, et al. Role of tumor necrosis factor gene polymorphisms (−308 and −238) in breast cancer susceptibility and severity. Breast Cancer Res. 2004;6:395–400.CrossRefGoogle Scholar
  130. 130.
    Gupta R, Sharma SC, Das SN, et al. Association of TNF-alpha and TNFR1 promoters and 3’UTR region of TNFR2 gene polymorphisms with genetic susceptibility to tobacco-related oral carcinoma in Asian Indians. Oral Oncol. 2008;44:455–63.CrossRefPubMedGoogle Scholar
  131. 131.
    Kohaar I, Tiwari P, Kumar R, et al. Association of single nucleotide polymorphisms (SNPs) in TNF-LTA locus with breast cancer risk in Indian population. Breast Cancer Res Treat. 2009;114:347–55.CrossRefPubMedGoogle Scholar
  132. 132.
    Dunning KR, Anastasi MR, Zhang VJ, et al. Regulation of fatty acid oxidation in mouse cumulus-oocyte complexes during maturation and modulation by PPAR agonists. PLoS One. 2014;9(2):e87327.PubMedCentralCrossRefPubMedGoogle Scholar
  133. 133.
    Wang Y, Lerner S, Leibovici D, et al. Polymorphisms in the inflammatory genes IL-6, IL-8, TNF- alpha, NFKB1, and PPARG and bladder cancer risk. Proc Am Assoc Cancer Res Abstract. 2004;45:3979.Google Scholar
  134. 134.
    Yoshimura R, Matsuyama M, Segawa Y, et al. Expression of peroxisome proliferator-receptors (PPARs) in human urinary bladder carcinoma and growth inhibition by its agonists. Int J Cancer. 2003;104(5):597–602.CrossRefPubMedGoogle Scholar
  135. 135.
    Mansure JJ, Nassim R, Kassouf W. Peroxisome proliferator-activated receptors gamma in bladder cancer: a promising therapeutic target. Cancer Biol Ther. 2009;8(7):6–15.CrossRefPubMedGoogle Scholar
  136. 136.
    Vane JR, Bakhle YS, Botting R. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998;38:493–501.CrossRefGoogle Scholar
  137. 137.
    Tsujii M, Kawano S, Tsujii S, et al. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell. 1998;93:705–16.CrossRefPubMedGoogle Scholar
  138. 138.
    Gangwar R, Mandhani A, Mittal RD. Functional polymorphisms of cyclooxygenase-2 (COX-2 gene) and risk of urinary bladder cancer in India. Surgery. 2011;149(1):126–34.CrossRefPubMedGoogle Scholar
  139. 139.
    Kang S, Kim YB, Kim MH, et al. Polymorphism in the nuclear factor kappa-B binding promoter region of cyclooxygenase-2 is associated with an increased risk of bladder cancer. Cancer Lett. 2005;217:11–6.CrossRefPubMedGoogle Scholar
  140. 140.
    Shariat SF, Chade DC, Karakiewicz PI, et al. Combination of multiple molecular markers can improve prognostication in patients with locally advanced and lymph node positive bladder Cancer. J Urol. 2010;183:68–75.CrossRefPubMedGoogle Scholar
  141. 141.
    Lamont FR, Tomlinson DC, Cooper PA, et al. Small molecule FGF receptor inhibitors block FGFR-dependent urothelial carcinoma growth in vitro and in vivo. Br J Cancer. 2011;104:75–82.CrossRefPubMedGoogle Scholar
  142. 142.
    Jirawatnotai S, Hu Y, Michowski W, et al. A function for cyclinD1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature. 2011;474:230–4.PubMedCentralCrossRefPubMedGoogle Scholar
  143. 143.
    Kopparapu PK, Boorjian SA, Robinson BD, et al. Expression of cyclind1 and its association with disease characteristics in bladder cancer. Anticancer Res. 2013;33:5235–42.PubMedCentralPubMedGoogle Scholar
  144. 144.
    Liukkonen T, Lipponen P, Raitanen M, et al. Evaluation of p21WAF1/CIP1 and cyclin D1 expression in the progression of superficial bladder cancer. Finbladder Group. Urol Res. 2000;28:285–92.CrossRefPubMedGoogle Scholar
  145. 145.
    Kamai T, Takagi K, Asami H, et al. Decreasing of p27 (Kip1) and cyclin E protein levels is associated with progression from superficial into invasive bladder cancer. Br J Cancer. 2001;84:1242–51.PubMedCentralCrossRefPubMedGoogle Scholar
  146. 146.
    Salinas-Sánchez AS, Atienzar-Tobarra M, Lorenzo-Romero JG, et al. Sensitivity and specificity of p53 protein detection by immunohistochemistry in patients with urothelial bladder carcinoma. Urol Int. 2007;79:321–7.CrossRefPubMedGoogle Scholar
  147. 147.
    Ecke TH, Sachs MD, Lenk SV, et al. TP53 gene mutations as an independent marker for urinary bladder cancer progression. Int J Mol Med. 2008;21:655–61.PubMedGoogle Scholar
  148. 148.
    Youssef RF, Mitra AP, Bartsch G, Jones PA, et al. Molecular targets and targeted therapies in bladder cancer management. World J Urol. 2009;27:9–20.CrossRefPubMedGoogle Scholar
  149. 149.
    Malats N, Bustos A, Nascimento CM, et al. P53 as a prognostic marker for bladder cancer: a meta-analysis and review. Lancet Oncol. 2005;6:678–86.CrossRefPubMedGoogle Scholar
  150. 150.
    Stadler WM, Lerner SP, Groshen S, et al. Phase III study of molecularly targeted adjuvant therapy in locally advanced urothelial cancer of the bladder based on p53 status. J Clin Oncol. 2011;29:3443–9.PubMedCentralCrossRefPubMedGoogle Scholar
  151. 151.
    Cheng L, Zhang S, MacLennan GT, et al. Bladder cancer: translating molecular genetic insights into clinical practice. Hum Pathol. 2011;42(4):455–81.CrossRefPubMedGoogle Scholar
  152. 152.
    Bryan RT, Zeegers MP, James ND, et al. Biomarkers in bladder cancer. BJU Int. 2000;105:608–13.CrossRefGoogle Scholar
  153. 153.
    Villares GJ, Zigler M, Blehm K, et al. Targeting EGFR in bladder cancer. World J Urol. 2007;25:573–9.CrossRefPubMedGoogle Scholar
  154. 154.
    Vrooman OP, Witjes JA. Molecular markers for detection, surveillance and prognostication of bladder cancer. Int J Urol. 2009;16:234–43.CrossRefPubMedGoogle Scholar
  155. 155.
    Adida C, Crotty PL, McGrath J, et al. Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol. 1998;152:43–9.PubMedCentralPubMedGoogle Scholar
  156. 156.
    Ku JH, Godoy G, Amiel GE, Lerner SP. Urine survivin as a diagnostic biomarker for bladder cancer: a systematic review. BJU Int. 2012;110:630–6.CrossRefPubMedGoogle Scholar
  157. 157.
    Barbisan F, Santinelli A, Mazzucchelli R, et al. Strong immunohistochemical expression of fibroblast growth factor receptor 3, superficial staining pattern of cytokeratin 20, and low proliferative activity define those papillary urothelial neoplasms of low malignant potential that do not recur. Cancer. 2008;112:636–44.CrossRefPubMedGoogle Scholar
  158. 158.
    Korkolopoulou P, Christodoulou P, Konstantinidou AE, et al. Cell cycle regulators in bladder cancer: a multivariate survival study with emphasis on p27Kip1. Hum Pathol. 2000;31:751–60.CrossRefPubMedGoogle Scholar
  159. 159.
    Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–28.CrossRefPubMedGoogle Scholar
  160. 160.
    Tozawa T, Tamura G, Honda T, et al. Promoter hypermethylation of DAPkinase is associated with poor survival in primary biliary tract carcinoma patients. Cancer Sci. 2004;95:736–40.CrossRefPubMedGoogle Scholar
  161. 161.
    Catto JW, Azzouzi AR, Rehman I, et al. Promoter hypermethylation is associated with tumor location, stage, and subsequent progression in transitional cell carcinoma. J Clin Oncol 2005;23:2903–10Google Scholar
  162. 162.
    Kim WJ, Kim EJ, Jeong P, et al. RUNX3 inactivation by point mutations and aberrant DNA methylation in bladder tumors. Cancer Res. 2005;65:9347–54.CrossRefPubMedGoogle Scholar
  163. 163.
    Bryan RT, Zeegers MP, Nicholas DJ, WallaceMA, et al. Biomarkers in bladder cancer. BJU Int 2010;105:608–13.Google Scholar
  164. 164.
    Stein JP, Ginsberg DA, Grossfeld GD, et al. Effect of p21WAF1/CIP1 expression on tumor progression in bladder cancer. J Natl Cancer Inst 1998;90(14):1072–9 Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • A. N. Srivastava
    • 1
    Email author
  • Kirti A. Gautam
    • 2
    • 3
  • S. N. Sankhwar
    • 2
  1. 1.Department of PathologyEra University, Era’s Lucknow Medical College and HospitalLucknowIndia
  2. 2.Department of UrologyKing George’s UniversityLucknowIndia
  3. 3.Department of PediatricGSVM Medical CollegeKanpurIndia

Personalised recommendations