Advertisement

Molecular Diagnostics in Pancreatic Cancer

  • Shruti Mishra
  • Vipin Rai
  • Abhai Kumar
  • Sushil Kumar Aggarwal
  • Subash Chandra GuptaEmail author
Chapter

Abstract

Pancreatic cancer (PaCa) originates from the lining of the ductal cells or the islets cells of the pancreas. The most common form of pancreatic cancer is the ductal adenocarcinoma. During recent years, an increase in the incidence of PaCa is reported in India as compared to western countries. Although exact molecular mechanism remains unknown, life style factors have been shown to play a major role. The disease is normally diagnosed at an advanced stage. Several markers have been developed for the diagnosis and prognosis of the disease. Among these markers include carbohydrate antigen 19-9, carbohydrate antigen 242, CAM17.1, tissue inhibitor of matrix metalloproteinase 1 (TIMP-1), macrophage inhibitory cytokine-1 (MIC-1), osteopontin (OPN), alterations in DNA methylation, mutations in KRAS, hENT1, SPARC, and mucins. The biological fluids such as serum and pancreatic juice have been used for the diagnosis and prognosis of the disease. The advantages and disadvantages associated with these markers and biological fluids are discussed in this chapter.

Keywords

Biomarker Diagnosis KRAS Prognosis Pancreatic cancer 

Notes

Acknowledgement

The authors would like to acknowledge the financial support from Science and Engineering Research Board (ECR/2016/000034), and University Grants Commission [No. F.30-112/2015 (BSR)]. SM is an ICMR-JRF (3/1/3/JRF-2016/LS/HRD-65-80388).

References

  1. 1.
    Coppola D. Molecular prognostic markers in pancreatic cancer. Cancer Control. 2000;7(5):421–7.PubMedGoogle Scholar
  2. 2.
    Furukawa T, Duguid WP, Rosenberg L, Viallet J, Galloway DA, Tsao M-S. Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7 gene of human papilloma virus 16. Am J Pathol. 1996;148(6):1763.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.PubMedGoogle Scholar
  4. 4.
    Inoue S, Tezel E, Nakao A. Molecular diagnosis of pancreatic cancer. Hepatogastroenterology. 2001;48(40):933–8.PubMedGoogle Scholar
  5. 5.
    Aggarwal BB. Nuclear factor-κB: the enemy within. Cancer Cell. 2004;6(3):203–8.PubMedGoogle Scholar
  6. 6.
    Liptay S, Weber CK, Ludwig L, Wagner M, Adler G, Schmid RM. Mitogenic and antiapoptotic role of constitutive NF-κB/Rel activity in pancreatic cancer. Int J Cancer. 2003;105(6):735–46.PubMedGoogle Scholar
  7. 7.
    Aggarwal BB, Vijayalekshmi R, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res. 2009;15(2):425–30.PubMedGoogle Scholar
  8. 8.
    Kornmann M, Ishiwata T, Itakura J, Tangvoranuntakul P, Beger HG, Korc M. Increased cyclin D1 in human pancreatic cancer is associated with decreased postoperative survival. Oncology. 1998;55(4):363–9.PubMedGoogle Scholar
  9. 9.
    Yebra M, Filardo E, Bayna E, Kawahara E, Becker J, Cheresh D. Induction of carcinoma cell migration on vitronectin by NF-kappa B-dependent gene expression. Mol Biol Cell. 1995;6(7):841–50.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant cK-ras genes. Cell. 1988;53(4):549–54.PubMedGoogle Scholar
  11. 11.
    Hruban RH, Van Mansfeld A, Offerhaus G, Van Weering D, Allison DC, Goodman SN, et al. K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Pathol. 1993;143(2):545.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Hingorani SR, Tuveson DA. Ras redux: rethinking how and where Ras acts. Curr Opin Genet Dev. 2003;13(1):6–13.PubMedGoogle Scholar
  13. 13.
    Russo AA, Tong L, Lee J-O, Jeffrey PD, Pavletich NP. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16 INK4a. Nature. 1998;395(6699):237.PubMedGoogle Scholar
  14. 14.
    Liggett WH Jr, Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol. 1998;16(3):1197–206.PubMedGoogle Scholar
  15. 15.
    Schutte M, Hruban RH, Geradts J, Maynard R, Hilgers W, Rabindran SK, et al. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res. 1997;57(15):3126–30.PubMedGoogle Scholar
  16. 16.
    Redston MS, Caldas C, Seymour AB, Hruban RH, Da Costa L, Yeo CJ, et al. p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Res. 1994;54(11):3025–33.PubMedGoogle Scholar
  17. 17.
    Hermeking H, Lengauer C, Polyak K, He T-C, Zhang L, Thiagalingam S, et al. 14-3-3σ is a p53-regulated inhibitor of G2/M progression. Mol Cell. 1997;1(1):3–11.PubMedGoogle Scholar
  18. 18.
    Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B. 14-3-3σ is required to prevent mitotic catastrophe after DNA damage. Nature. 1999;401(6753):616.PubMedGoogle Scholar
  19. 19.
    Massagué J, Blain SW, Lo RS. TGFβ signaling in growth control, cancer, and heritable disorders. Cell. 2000;103(2):295–309.PubMedGoogle Scholar
  20. 20.
    Siegel PM, Massagué J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat Rev Cancer. 2003;3(11):807.PubMedGoogle Scholar
  21. 21.
    Hahn SA, Schutte M, Hoque AS, Moskaluk CA, Da Costa LT, Rozenblum E, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996;271(5247):350–3.PubMedGoogle Scholar
  22. 22.
    Koprowski H, Steplewski Z, Mitchell K, Herlyn M, Herlyn D, Fuhrer P. Colorectal carcinoma antigens detected by hybridoma antibodies. Somatic Cell Genet. 1979;5(6):957–71.PubMedGoogle Scholar
  23. 23.
    Berger AC, Garcia M Jr, Hoffman JP, Regine WF, Abrams RA, Safran H, et al. Postresection CA 19-9 predicts overall survival in patients with pancreatic cancer treated with adjuvant chemoradiation: a prospective validation by RTOG 9704. J Clin Oncol. 2008;26(36):5918.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Pelzer U, Hilbig A, Stieler J, Sinn M, Bahra M, Dörken B, et al. Value of carbohydrate antigen 19-9 in predicting response and therapy control in patients with metastatic pancreatic cancer undergoing first-line therapy. Front Oncol. 2013;3:155.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Shah UA, Saif MW. Tumor markers in pancreatic cancer: 2013. JOP. 2013;14(4):318–21.PubMedGoogle Scholar
  26. 26.
    Locker GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 2006;24(33):5313–27.PubMedGoogle Scholar
  27. 27.
    Lamerz R. Role of tumour markers, cytogenetics. Ann Oncol. 1999;10(Suppl 4):S145–S9.Google Scholar
  28. 28.
    Goonetilleke K, Siriwardena A. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur J Surg Oncol. 2007;33(3):266–70.PubMedGoogle Scholar
  29. 29.
    Lindholm L, Johansson C, Jansson E, Hallberg C, Nilsson O. An immunoradiometric assay (IRMA) for the CA 50 antigen. Tumor Marker Antigens Lund: Studentlitteratur; 1985. p. 122–33.Google Scholar
  30. 30.
    Nilsson O, Johansson C, Glimelius B, Persson B, Nørgaard-Pedersen B, Andrén-Sandberg Å, et al. Sensitivity and specificity of CA242 in gastro-intestinal cancer. A comparison with CEA, CA50 and CA 19-9. Br J Cancer. 1992;65(2):215.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Eccleston D, Milton J, Hoffman J, Bara J, Rhodes J. Pancreatic tumour marker anti-mucin antibody CAM 17.1 reacts with a sialyl blood group antigen, probably I, which is expressed throughout the human gastrointestinal tract. Digestion. 1998;59(6):665–70.PubMedGoogle Scholar
  32. 32.
    Parker N, Makin C, Ching C, Eccleston D, Taylor O, Milton D, et al. A new enzyme-linked lectin/mucin antibody sandwich assay (CAM 17.1/WGA) assessed in combination with CA 19-9 and peanut lectin binding assay for the diagnosis of pancreatic cancer. Cancer. 1992;70(5):1062–8.PubMedGoogle Scholar
  33. 33.
    Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Olson MW, Gervasi DC, Mobashery S, Fridman R. Kinetic analysis of the binding of human matrix metalloproteinase-2 and-9 to tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. J Biol Chem. 1997;272(47):29975–83.PubMedGoogle Scholar
  35. 35.
    Zhou W, Sokoll LJ, Bruzek DJ, Zhang L, Velculescu VE, Goldin SB, et al. Identifying markers for pancreatic cancer by gene expression analysis. Cancer Epidemiol Biomarkers Prev. 1998;7(2):109–12.PubMedGoogle Scholar
  36. 36.
    Mroczko B, Lukaszewicz-Zajac M, Wereszczynska-Siemiatkowska U, Groblewska M, Gryko M, Kedra B, et al. Clinical significance of the measurements of serum matrix metalloproteinase-9 and its inhibitor (tissue inhibitor of metalloproteinase-1) in patients with pancreatic cancer: metalloproteinase-9 as an independent prognostic factor. Pancreas. 2009;38(6):613–8.PubMedGoogle Scholar
  37. 37.
    Poruk KE, Firpo MA, Scaife CL, Adler DG, Emerson LL, Boucher KM, et al. Serum osteopontin and TIMP-1 as diagnostic and prognostic biomarkers for pancreatic adenocarcinoma. Pancreas. 2013;42(2):193.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Gress T, Müller-Pillasch F, Lerch M, Friess H, Büchler M, Adler G. Expression and in-situ localization of genes coding for extracellular matrix proteins and extracellular matrix degrading proteases in pancreatic cancer. Int J Cancer. 1995;62(4):407–13.PubMedGoogle Scholar
  39. 39.
    Bootcov MR, Bauskin AR, Valenzuela SM, Moore AG, Bansal M, He XY, et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-β superfamily. Proc Natl Acad Sci. 1997;94(21):11514–9.PubMedGoogle Scholar
  40. 40.
    Koopmann J, Buckhaults P, Brown DA, Zahurak ML, Sato N, Fukushima N, et al. Serum macrophage inhibitory cytokine 1 as a marker of pancreatic and other periampullary cancers. Clin Cancer Res. 2004;10(7):2386–92.PubMedGoogle Scholar
  41. 41.
    Harsha H, Kandasamy K, Ranganathan P, Rani S, Ramabadran S, Gollapudi S, et al. A compendium of potential biomarkers of pancreatic cancer. PLoS Med. 2009;6(4):e1000046.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Rittling S, Chambers A. Role of osteopontin in tumour progression. Br J Cancer. 2004;90(10):1877.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Wu Y, Denhardt D, Rittling S. Osteopontin is required for full expression of the transformed phenotype by the ras oncogene. Br J Cancer. 2000;83(2):156.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Iacobuzio-Donahue CA, Maitra A, Shen-Ong GL, Van Heek T, Ashfaq R, Meyer R, et al. Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am J Pathol. 2002;160(4):1239–49.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Vincent A, Omura N, Hong S-M, Jaffe A, Eshleman JR, Goggins M. Genome-wide analysis of promoter methylation associated with gene expression profiles of pancreatic adenocarcinomas. Clin Cancer Res. 2011;17(13):4341–54.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Nones K, Waddell N, Song S, Patch AM, Miller D, Johns A, et al. Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling. Int J Cancer. 2014;135(5):1110–8.PubMedGoogle Scholar
  47. 47.
    Matsubayashi H, Canto M, Sato N, Klein A, Abe T, Yamashita K, et al. DNA methylation alterations in the pancreatic juice of patients with suspected pancreatic disease. Cancer Res. 2006;66(2):1208–17.PubMedGoogle Scholar
  48. 48.
    Sato N, Fukushima N, Maitra A, Matsubayashi H, Yeo CJ, Cameron JL, et al. Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res. 2003;63(13):3735–42.PubMedGoogle Scholar
  49. 49.
    Cully M, Downward J. SnapShot: Ras signaling. Cell. 2008;133(7):1292.PubMedGoogle Scholar
  50. 50.
    Stolze B, Reinhart S, Bulllinger L, Fröhling S, Scholl C. Comparative analysis of KRAS codon 12, 13, 18, 61, and 117 mutations using human MCF10A isogenic cell lines. Sci Rep. 2015;5:8535.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Berthelemy P, Bouisson M, Escourrou J, Vaysse N, Rumeau JL, Pradayrol L. Identification of K-ras mutations in pancreatic juice in the early diagnosis of pancreatic cancer. Ann Intern Med. 1995;123(3):188–91.PubMedGoogle Scholar
  52. 52.
    Lu X, Xu T, Qian J, Wen X, Wu D. Detecting K-ras and p53 gene mutation from stool and pancreatic juice for diagnosis of early pancreatic cancer. Chin Med J. 2002;115(11):1632–6.PubMedGoogle Scholar
  53. 53.
    Farrell JJ, Elsaleh H, Garcia M, Lai R, Ammar A, Regine WF, et al. Human equilibrative nucleoside transporter 1 levels predict response to gemcitabine in patients with pancreatic cancer. Gastroenterology. 2009;136(1):187–95.PubMedGoogle Scholar
  54. 54.
    Kim R, Tan A, Lai KK, Jiang J, Wang Y, Rybicki LA, et al. Prognostic roles of human equilibrative transporter 1 (hENT-1) and ribonucleoside reductase subunit M1 (RRM1) in resected pancreatic cancer. Cancer. 2011;117(14):3126–34.PubMedGoogle Scholar
  55. 55.
    Calegari M, Orlandi A, Cocomazzi A, Martini M, Bagala C, Indellicati G, et al. P-164 Gemcitabine versus FOLFIRINOX in patients with advanced pancreatic adenocarcinoma HENT1 positive: back to the future. Ann Oncol. 2015;26(Suppl 4):iv47–iv8.Google Scholar
  56. 56.
    Renouf DJ, Karasinska J, Kalloger S, Peixoto RDA, O’Connor K, Schaeffer D. The association of epithelial expression of hENT1 and survival from adjuvant gemcitabine in pancreatic ductal adenocarcinoma (PDAC). J Clin Oncol. 2015;33(3 Suppl):296.Google Scholar
  57. 57.
    Von Hoff DD, Ramanathan RK, Borad MJ, Laheru DA, Smith LS, Wood TE, et al. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol. 2011;29(34):4548.Google Scholar
  58. 58.
    Ormanns S, Haas M, Baechmann S, Remold A, Quietzsch D, Clemens MR, et al. Impact of SPARC expression level on outcome in patients with advanced pancreatic cancer not receiving nab-paclitaxel: a pooled analysis from prospective clinical and translational trials. Br J Cancer. 2016;115(12):1520–9.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Jonckheere N, Skrypek N, Van Seuningen I. Mucins and pancreatic cancer. Cancers. 2010;2(4):1794–812.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Balagué C, Gambús G, Carrato C, Porchet N, Aubert J-P, Kim YS, et al. Altered expression of MUC2, MUC4, and MUC5 mucin genes in pancreas tissues and cancer cell lines. Gastroenterology. 1994;106(4):1054–61.PubMedGoogle Scholar
  61. 61.
    Terada T, Ohta T, Sasaki M, Nakanuma Y, Kim YS. Expression of MUC apomucins in normal pancreas and pancreatic tumours. J Pathol. 1996;180(2):160–5.PubMedGoogle Scholar
  62. 62.
    Tréhoux S, Duchêne B, Jonckheere N, Van Seuningen I. The MUC1 oncomucin regulates pancreatic cancer cell biological properties and chemoresistance. Implication of p42–44 MAPK, Akt, Bcl-2 and MMP13 pathways. Biochem Biophys Res Commun. 2015;456(3):757–62.PubMedGoogle Scholar
  63. 63.
    Tréhoux S, Lahdaoui F, Delpu Y, Renaud F, Leteurtre E, Torrisani J, et al. Micro-RNAs miR-29a and miR-330-5p function as tumor suppressors by targeting the MUC1 mucin in pancreatic cancer cells. Biochim Biophys Acta. 2015;1853(10):2392–403.PubMedGoogle Scholar
  64. 64.
    Yonezawa S, Higashi M, Yamada N, Yokoyama S, Goto M. Significance of mucin expression in pancreatobiliary neoplasms. J Hepatobiliary Pancreat Sci. 2010;17(2):108–24.PubMedGoogle Scholar
  65. 65.
    Besmer DM, Curry JM, Roy LD, Tinder TL, Sahraei M, Schettini J, et al. Pancreatic ductal adenocarcinoma mice lacking mucin 1 have a profound defect in tumor growth and metastasis. Cancer Res. 2011;71(13):4432–42.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Nath S, Roy LD, Grover P, Rao S, Mukherjee P. Mucin 1 regulates Cox-2 gene in pancreatic cancer. Pancreas. 2015;44(6):909.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Andrianifahanana M, Moniaux N, Schmied BM, Ringel J, Friess H, Hollingsworth MA, et al. Mucin (MUC) gene expression in human pancreatic adenocarcinoma and chronic pancreatitis: a potential role of MUC4 as a tumor marker of diagnostic significance. Clin Cancer Res. 2001;7(12):4033–40.PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shruti Mishra
    • 1
  • Vipin Rai
    • 1
  • Abhai Kumar
    • 2
  • Sushil Kumar Aggarwal
    • 3
  • Subash Chandra Gupta
    • 1
    Email author
  1. 1.Laboratory for Translational Cancer Research, Department of BiochemistryInstitute of ScienceVaranasiIndia
  2. 2.Interdisciplinary School of Life Sciences, Institute of ScienceVaranasiIndia
  3. 3.Department of OtorhinolaryngologyInstitute of Medical Sciences, Banaras Hindu UniversityVaranasiIndia

Personalised recommendations