Advertisement

Metal Complexation and Patent Studies of Flavonoid

  • Valentina Uivarosi
  • Alexandra Cristina Munteanu
  • Ajay Sharma
  • Hardeep Singh Tuli
Chapter

Abstract

Flavonoids comprise a large group of polyphenolic compounds with well-documented biological activities, like antioxidant, anti-inflammatory, antitumor, antiviral, and antiallergic. Flavonoids are structurally divided into eight different groups: flavones (e.g., luteolin), flavonols (e.g., quercetin), flavanones (e.g., naringenin), flavanonols (e.g., epigallocatechin gallate), isoflavones (e.g., genistein), anthocyanidins (e.g., cyanidin), dihydroflavonols, and chalcones. Out of the first six groups, we have selected one representative, given in parenthesis, which has been reported for a wide spectrum of its biological effects. The aim of this study is to summarize the knowledge gathered in regard to the metal complexation sites in flavonoids, the anticancer and chemopreventive activities of six selected natural flavonoids and their metal complexes, as well as patent highlights related to their anticancer therapeutic potential. Recent studies investigating the interaction of flavonoids with diverse molecular targets and signaling pathways have been given a special attention, since these may suggest directions for future research.

Keywords

Flavonoids Metal complexes Patents Anticancer Chemopreventive activities 

References

  1. Abbas M, Saeed F, Anjum FM, Afzaal M, Tufail T, Bashir MS, Ishtiaq A, Hussain S, Suleria HAR (2017) Natural polyphenols: an overview. Int J Food Prop 20:1689–1699.  https://doi.org/10.1080/10942912.2016.1220393 CrossRefGoogle Scholar
  2. Ahmedova A, Paradowska K, Wawer I (2012) 1H, 13C MAS NMR and DFT GIAO study of quercetin and its complex with Al(III) in solid state. J Inorg Biochem 110:27–35.  https://doi.org/10.1016/j.jinorgbio.2012.02.007 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aihua N, Wei G, Yang L, Wenxia Z, Zhiyong X, Ru M. (2017) Flavonoids acetic acid derivatives, pharmaceutical compositions thereof, methods for their preparation and use. CN104945281B (26 April 2017)Google Scholar
  4. Ansari AA (2008) H NMR, spectroscopic and molecular modeling studies on paramagnetic lanthanide ( III ) -quercetin complexes. Main Group Chemi 7:15–30.  https://doi.org/10.1080/10241220801890072 CrossRefGoogle Scholar
  5. Ardito F, Pellegrino MR, Perrone D, Troiano G, Cocco A, Muzio LL (2017) In vitro study on anti-cancer properties of genistein in tongue cancer. Onco Targets Ther 10:5405–5415.  https://doi.org/10.2147/OTT.S133632 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Babu PVA, Liu D (2009) Flavonoids and cardiovascular health. In: Watson RR (ed) Complementary and alternative therapies and the aging population. Academic Press, San Diego, pp 371–392.  https://doi.org/10.1016/B978-0-12-374228-5.00018-4 CrossRefGoogle Scholar
  7. Baohua Z, Yunan Z, Lanxiang S, Sizhen L, Ruixia G (2017) Quercetin derivative and preparation method and application thereof. CN106674180 A (17 May 2017)Google Scholar
  8. Barve V, Ahmed F, Adsule S, Banerjee S, Kulkarni S, Katiyar P, Anson CE, Powell AK, Padhye S, Sarkar FH (2006) Synthesis, molecular characterization, and biological activity of novel synthetic derivatives of chromen-4-one in human cancer cells. J Med Chem 49:3800–3808.  https://doi.org/10.1021/jm051068y CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bi Y, Min M, Shen W, Liu Y (2018) Genistein induced anticancer effects on pancreatic cancer cell lines involves mitochondrial apoptosis, G0/G1cell cycle arrest and regulation of STAT3 signalling pathway. Phytomedicine 39:10–16.  https://doi.org/10.1016/j.phymed.2017.12.001 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bodduluru LN, Kasala ER, Madhana RM, Barua CC, Hussain MI, Haloi P, Borah P (2016) Naringenin ameliorates inflammation and cell proliferation in benzo(a)pyrene induced pulmonary carcinogenesis by modulating CYP1A1, NFkappaB and PCNA expression. Int Immunopharmacol 30:102–110.  https://doi.org/10.1016/j.intimp.2015.11.036 CrossRefGoogle Scholar
  11. Bohl M, Tietze S, Sokoll A, Madathil S, Pfennig F, Apostolakis J, Fahmy K, Gutzeit HO (2007) Flavonoids affect actin functions in cytoplasm and nucleus. Biophys J 93:2767–2780.  https://doi.org/10.1529/biophysj.107.107813 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bo-Wen L, Cheng-Chen G, Hai-Fei S, Ying-Yu C (2016) Effects of anthocyanins on the prevention and treatment of cancer. Br J Pharmacol 174:1226–1243.  https://doi.org/10.1111/bph.13627 CrossRefGoogle Scholar
  13. Bukhari SB, Memon S, Tahir MM, Bhanger MI (2008) Synthesis, characterization and investigation of antioxidant activity of cobalt-quercetin complex. J Mol Struct 892:39–46.  https://doi.org/10.1016/j.molstruc.2008.04.050 CrossRefGoogle Scholar
  14. Bukhari SB, Memon S, Mahroof-Tahir M, Bhanger MI (2009) Synthesis, characterization and antioxidant activity copper-quercetin complex. Spectrochim Acta – Part A Mol Biomol Spectrosc 71:1901–1906.  https://doi.org/10.1016/j.saa.2008.07.030 CrossRefGoogle Scholar
  15. Carnovale V, Labaeye C, Britten M, Couillard C, Bazinet L (2016) Effect of various calcium concentrations on the interactions between β-lactoglobulin and epigallocatechin-3-gallate. Int Dairy J 59:85–90.  https://doi.org/10.1016/j.idairyj.2016.03.008 CrossRefGoogle Scholar
  16. Casagrande F, Darbon J-M (2001) Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK1. Biochem Pharmacol 61:1205–1215.  https://doi.org/10.1016/S0006-2952(01)00583-4 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chahar MK, Sharma N, Dobhal MP, Joshi YC (2011) Flavonoids: a versatile source of anticancer drugs. Pharmacogn Rev 5:1–12.  https://doi.org/10.4103/0973-7847.79093 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chakrawarti L, Agrawal R, Dang S, Gupta S, Gabrani R (2016) Therapeutic effects of EGCG: a patent review. Expert Opin Ther Pat 26(8):907–916.  https://doi.org/10.1080/13543776.2016.1203419 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chang H-L, Chang Y-M, Lai S-C, Chen K-M, Wang K-C, Chiu T-T, Chang F-H, Hsu L-S (2017) Naringenin inhibits migration of lung cancer cells via the inhibition of matrix metalloproteinases-2 and -9. Exp Ther Med 13:739–744.  https://doi.org/10.3892/etm.2016.3994 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chen X, Yu H, Shen S, Yin J (2007) Role of Zn2+ in epigallocatechin gallate affecting the growth of PC-3 cells. J Trace Elem Med Biol 21:125–131.  https://doi.org/10.1016/j.jtemb.2006.12.007 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chen W, Sun S, cao W, Liang Y, Song J (2009) Antioxidant property of quercetin-Cr(III) complex: the role of Cr(III) ion. J Mol Struct 918:194–197.  https://doi.org/10.1016/j.molstruc.2008.08.008 CrossRefGoogle Scholar
  22. Chengxiong Y, Liwei L Qiang L, Li L, Xuan Y, Jianqing Y (2016) Genistein salt oral solution and its preparation method and use. CN105963246A (28 Sept 2016)Google Scholar
  23. Chengxiong Y, Yongqin Z, Liwei L, Xuerong M (2018a) A kind of genistein derivatives, and preparation method and application thereof. CN107892686A (10 March 2018)Google Scholar
  24. Chengxiong Y, Jiali H, Liwei L, Xuerong M (2018b) Acylated derivative of genistein and preparation process of acylated derivative CN107573316A (12 Jan 2018)Google Scholar
  25. Chiyomaru T, Yamamura S, Fukuhara S, Yoshino H, Kinoshita T, Majid S, Saini S, Chang I, Tanaka Y, Enokida H, Seki N, Nakagawa M, Dahiya R (2013) Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR. PLoS One 8:e70372.  https://doi.org/10.1371/journal.pone.0070372 CrossRefGoogle Scholar
  26. Cho E, Chung EY, Jang H-Y, Hong O-Y, Chae HS, Jeong Y-J, Kim S-Y, Kim B-S, Yoo DJ, Kim J-S, Park K-H (2017) Anti-cancer effect of cyanidin-3-glucoside from mulberry via caspase-3 cleavage and DNA fragmentation in vitro and in vivo. Anti Cancer Agents Med Chem 17:1519–1525.  https://doi.org/10.2174/1871520617666170327152026 CrossRefGoogle Scholar
  27. Chul KB, Ji JE, Jin KS (2015) A novel composition for suppressing metastasis of KR101505175B1, 24 March 2015Google Scholar
  28. Chung SS, Vadgama JV (2015) Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFkappaB signaling. Anticancer Res 35:39–46PubMedPubMedCentralGoogle Scholar
  29. Colditz GA, Branch LG, Lipnick RJ, Willett WC, Rosner B, Posner BM, Hennekens CH (1985) Increased green and yellow vegetable intake and lowered cancer deaths in an elderly population. Am J Clin Nutr 41:32–36.  https://doi.org/10.1093/ajcn/41.1.32 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Cornard JP, Merlin JC (2003) Comparison of the chelating power of hydroxyflavones. J Mol Struct 651–653:381–387.  https://doi.org/10.1016/S0022-2860(02)00655-5 CrossRefGoogle Scholar
  31. Cornard JP, Dangleterre L, Lapouge C (2005) Computational and spectroscopic characterization of the molecular and electronic structure of the Pb(II)−Quercetin complex. J Phys Chem A 109:10044–10051.  https://doi.org/10.1021/jp053506i CrossRefGoogle Scholar
  32. Cui S, Wang J, Wu Q, Qian J, Yang C, Bo P (2017) Genistein inhibits the growth and regulates the migration and invasion abilities of melanoma cells via the FAK/paxillin and MAPK pathways. Oncotarget 8:21674–21691.  https://doi.org/10.18632/oncotarget.15535 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Darband SG, Mojtaba K, Bahman Y, Shirin S, Pakdel FG, Attari JA, Iraj M, Somayeh N, Maryam M (2018) Quercetin: a functional dietary flavonoid with potential chemo-preventive properties in colorectal cancer. J Cell Physiol 233:6544–6560.  https://doi.org/10.1002/jcp.26595 CrossRefGoogle Scholar
  34. Das A, Majumder D, Saha C (2017) Correlation of binding efficacies of DNA to flavonoids and their induced cellular damage. J Photochem Photobiol B Biol 170:256–262.  https://doi.org/10.1016/j.jphotobiol.2017.04.019 CrossRefGoogle Scholar
  35. De Souza RFV, De Giovani WF (2005) Synthesis, spectral and electrochemical properties of Al(III) and Zn(II) complexes with flavonoids. Spectrochim Acta – Part A Mol Biomol Spectrosc 61:1985–1990.  https://doi.org/10.1016/j.saa.2004.07.029 CrossRefGoogle Scholar
  36. Di Martino RM, Luppi B, Bisi A, Gobbi S, Rampa A, Abruzzo A, Belluti F (2017a) Recent progress on curcumin-based therapeutics: a patent review (2012–2016). Part I: Curcumin. Expert Opin Ther Pat 27(5):579–590.  https://doi.org/10.1080/13543776.2017.1276566 CrossRefGoogle Scholar
  37. Di Martino RM, Bisi A, Rampa A, Gobbi S, Belluti F (2017b) Recent progress on curcumin-based therapeutics: a patent review (2012–2016). Part II: curcumin derivatives in cancer and neurodegeneration. Expert Opin Ther Pat 27(8):953–965.  https://doi.org/10.1080/13543776.2017.1339793 CrossRefGoogle Scholar
  38. Dimitrić Marković JM, Marković ZS, Brdarić TP, Pavelkić VM, Jadranin MB (2011) Iron complexes of dietary flavonoids: combined spectroscopic and mechanistic study of their free radical scavenging activity. Food Chem 129:1567–1577.  https://doi.org/10.1016/j.foodchem.2011.06.008 CrossRefGoogle Scholar
  39. Dong H, Yang X, He J, Cai S, Xiao K, Zhu L (2017) Enhanced antioxidant activity, antibacterial activity and hypoglycemic effect of luteolin by complexation with manganese(II) and its inhibition kinetics on xanthine oxidase. RSC Adv 7:53385–53395.  https://doi.org/10.1039/C7RA11036G CrossRefGoogle Scholar
  40. Dongfeng L, Chengdong Y (2015) Method for preparing total flavonoids of Chinese mosla herb and application of total flavonoids of Chinese mosla herb. CN104288223A, 21 Jan 2015Google Scholar
  41. Dowling S, Regan F, Hughes H (2010) The characterisation of structural and antioxidant properties of isoflavone metal chelates. J Inorg Biochem 104:1091–1098.  https://doi.org/10.1016/j.jinorgbio.2010.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Durgo K, Ivana H, Ivana Š, Jasna F (2011) Cytotoxic and genotoxic effects of the quercetin/lanthanum complex on human cervical carcinoma cells in vitro. Arch Ind Hyg Toxicol 62:221.  https://doi.org/10.2478/10004-1254-62-2011-2122 CrossRefGoogle Scholar
  43. Erdogan G, Karadag R, Dolen E (2005) Potentiometrie and spectrophotometric determination of the stability constants of quercetin complexes with aluminium(III) and iron(II). Rev Anal Chem 24:247.  https://doi.org/10.1515/REVAC.2005.24.4.247 CrossRefGoogle Scholar
  44. Erdogan S, Doganlar O, Doganlar ZB, Serttas R, Turkekul K, Dibirdik I, Bilir A (2016) The flavonoid apigenin reduces prostate cancer CD44(+) stem cell survival and migration through PI3K/Akt/NF-kappaB signaling. Life Sci 162:77–86.  https://doi.org/10.1016/j.lfs.2016.08.019 CrossRefGoogle Scholar
  45. Farhan M, Zafar A, Chibber S, Khan HY, Arif H, Hadi SM (2015) Mobilization of copper ions in human peripheral lymphocytes by catechins leading to oxidative DNA breakage: a structure activity study. Arch Biochem Biophys 580:31–40.  https://doi.org/10.1016/j.abb.2015.06.019 CrossRefGoogle Scholar
  46. Fazary AE, Alshihri AS, Alfaifi MY, Saleh KA, Eldin S, Elbehairi I, Fawy KF, Abd-Rabboh HSM (2016) Gibbs energies of protonation and complexation of platinum and vanadate metal ions with naringenin and phenolic acids: theoretical calculations associated with experimental values. J Chem Thermodyn 100:7–21.  https://doi.org/10.1016/j.jct.2016.04.005 CrossRefGoogle Scholar
  47. Furia E, Marino T, Russo N (2014) Insights into the coordination mode of quercetin with the Al(III) ion from a combined experimental and theoretical study. Dalt Trans 43:7269–7274.  https://doi.org/10.1039/C4DT00212A CrossRefGoogle Scholar
  48. Gafurov YM, Klimovich AA, Krivoshapko ON, Shtoda YN, Kim N, Popov AM, Rasskazov VA (2017) Biologically active food supplement with cancer-preventive action. RU2619207C1 (12 May 2017)Google Scholar
  49. Gan R-Y, Li H-B, Sui Z-Q, Corke H (2018) Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): an updated review. Crit Rev Food Sci Nutr 58:924–941.  https://doi.org/10.1080/10408398.2016.1231168 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Gao LG, Wang H, Song XL, Cao W (2013) Research on the chelation between luteolin and Cr(III) ion through infrared spectroscopy, UV-vis spectrum and theoretical calculations. J Mol Struct 1034:386–391.  https://doi.org/10.1016/j.molstruc.2012.10.053 CrossRefGoogle Scholar
  51. Gengyuan Z, Baohong W, Xiangcheng T, Dongyue B (2015) EGCG (epigallocatechin gallate) and chitosan oligosaccharide composition as well as preparation method and application thereof. CN104922143A (23 Sept 2015)Google Scholar
  52. Geon-seop K, Do HJ, Jun LS (2017) Composition for preventing, improving or treating hepatocellular carcinoma comprising flavonoid compounds isolated from fruit peels of Citrus spp. KR20170014595A (8 Feb 2017)Google Scholar
  53. Ghosh KS, Maiti TK, Mandal A, Dasgupta S (2006) Copper complexes of (−)-epicatechin gallate and (−)-epigallocatechin gallate act as inhibitors of ribonuclease a. FEBS Lett 580:4703–4708.  https://doi.org/10.1016/j.febslet.2006.07.054 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ghosh N, Chakraborty T, Mallick S, Mana S, Singha D, Ghosh B, Roy S (2015) Synthesis, characterization and study of antioxidant activity of quercetin – magnesium complex. Spectrochim Acta Part A Mol Biomol Spectrosc 151:807–813.  https://doi.org/10.1016/j.saa.2015.07.050 CrossRefGoogle Scholar
  55. Guo M, Perez C, Wei Y, Rapoza E, Su G, Bou-Abdallah F, Chasteen ND (2007) Iron-binding properties of plant phenolics and cranberry’s bio-effects. Dalton Trans:4951–4961.  https://doi.org/10.1039/b705136k
  56. Ham S, Kim KH, Kwon TH, Bak Y, Lee DH, Song YS, Park S, Park YS, Kim MS, Kang JW, Hong JT, Yoon D (2014) Luteolin induces intrinsic apoptosis via inhibition of E6/E7 oncogenes and activation of extrinsic and intrinsic signaling pathways in HPV-18-associated cells. Oncol Rep 31:2683–2691.  https://doi.org/10.3892/or.2014.3157 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Hirata H, Ueno K, Nakajima K, Tabatabai ZL, Hinoda Y, Ishii N, Dahiya R (2013) Genistein downregulates onco-miR-1260b and inhibits Wnt-signalling in renal cancer cells. Br J Cancer 108:2070–2078.  https://doi.org/10.1038/bjc.2013.173 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Hosseini MM, Karimi A, Behroozaghdam M, Javidi MA, Ghiasvand S, Bereimipour A, Aryan H, Nassiri F, Jangholi E (2017) Cytotoxic and apoptogenic effects of cyanidin-3-glucoside on the glioblastoma cell line. World Neurosurg 108:94–100.  https://doi.org/10.1016/j.wneu.2017.08.133 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Huang W, Wan C, Luo Q, Huang Z, Luo Q (2014) Genistein-inhibited cancer stem cell-like properties and reduced chemoresistance of gastric cancer. Int J Mol Sci 15:3432–3443.  https://doi.org/10.3390/ijms15033432 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Huiyao L (2018) Combination of naringenin and asiatic acid for cancer. CN108057034A (22 May 2018)Google Scholar
  61. Hwang J-T, Ha J, Park OJ (2005) Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways. Biochem Biophys Res Commun 332:433–440.  https://doi.org/10.1016/j.bbrc.2005.04.143 CrossRefGoogle Scholar
  62. Imai-Sumida M, Majid S, Dasgupta P, Kulkarni P, Saini S, Bhagirath D, Kato T, Maekawa S, Hashimoto Y, Shiina M, Deng G, Shahryari V, Tanaka Y, Dahiya R, Yamamura S (2017) Genistein inhibits renal cancer progression through long non-coding RNA HOTAIR suppression. Cancer Res 77:3449 LP–3443449. http://cancerres.aacrjournals.org/content/77/13_Supplement/3449.abstract Google Scholar
  63. Inoue MB, Inoue M, Fernando Q, Valcic S, Timmermann BN (2002) Potentiometric and (1)H NMR studies of complexation of Al(3+) with (−)-epigallocatechin gallate, a major active constituent of green tea. J Inorg Biochem 88:7–13CrossRefGoogle Scholar
  64. Islas MS, Naso LG, Lezama L, Valcarcel M, Salado C, Roura-Ferrer M, Ferrer EG, Williams PAM (2015) Insights into the mechanisms underlying the antitumor activity of an oxidovanadium(IV) compound with the antioxidant naringenin. Albumin binding studies. J Inorg Biochem 149:12–24.  https://doi.org/10.1016/j.jinorgbio.2015.04.011 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Jabeen E, Janjua NK, Ahmed S, Murtaza I, Ali T, Masood N, Rizvi AS, Murtaza G (2017) DFT predictions, synthesis, stoichiometric structures and anti-diabetic activity of Cu (II) and Fe (III) complexes of quercetin, morin, and primuletin. J Mol Struct 1150:459–468.  https://doi.org/10.1016/j.molstruc.2017.09.003 CrossRefGoogle Scholar
  66. Jiang Z, Li M, Qin Y, Jiang H, Zhang X, Wu M (2018) Luteolin inhibits tumorigenesis and induces apoptosis of non-small cell lung cancer cells via regulation of MicroRNA-34a-5p. Int J Mol Sci 19:447.  https://doi.org/10.3390/ijms19020447 CrossRefGoogle Scholar
  67. Jianguo J, Chunyan S, Sisi Z 2018 Application of an antineoplastic Gynostemma flavonoids and their preparation. CN107722087A (23 Feb 2018)Google Scholar
  68. Jiejun Q, Chuan Q (2017) Anti-cancer drug composition. CN107308270A (27 June 2017)Google Scholar
  69. Jinfeng Y, Zhenhua D (2017) Eleochairis toberosa peel anticancer extract as well as preparation method and application thereof. CN107007715A (04 Aug 2017)Google Scholar
  70. Jun T, Bochu W, Liancai Z (2007) Hydrolytic cleavage of DNA by quercetin zinc(II) complex. Bioorg Med Chem Lett 17:1197–1199.  https://doi.org/10.1016/j.bmcl.2006.12.023 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Jun T, Liancai Z, Bochu W (n.d.) GC (Guanine-Cytosine)-Selective DNA-Binding and Antitumor Activity of a Quercetin—Manganese(II) Complex. Chem Biodivers 8:1550–1559.  https://doi.org/10.1002/cbdv.201000313 CrossRefGoogle Scholar
  72. Junn-Liang C, Jyh-Ming C, Jer-Hwa C, Yu-Ching W, Yung-Wei L, Shun-Fa Y, Wei-Jiunn L, Ming-Hsien C (2017) Quercetin simultaneously induces G0/G1-phase arrest and caspase-mediated crosstalk between apoptosis and autophagy in human leukemia HL-60 cells. Environ Toxicol 32:1857–1868.  https://doi.org/10.1002/tox.22408 CrossRefGoogle Scholar
  73. Kashyap D, Sharma A, Tuli HS, Punia S, Sharma AK (2016) Ursolic acid and oleanolic acid: pentacyclic terpenoids with promising anti-inflammatory activities. Recent Pat Inflamm Allergy Drug Discov 10(1):21–33CrossRefGoogle Scholar
  74. Kashyap D, Tuli H, Garg V, Bhatnagar S, Sharma A (2018) Ursolic acid and quercetin: promising anticancer phytochemicals with antimetastatic and antiangiogenic potential. Tumor Microenviron 1:9–15.  https://doi.org/10.4103/tme.tme_3_17 CrossRefGoogle Scholar
  75. Kasprzak MM, Erxleben A, Ochocki J (2015) Properties and applications of flavonoid metal complexes. RSC Adv 5:45853–45877.  https://doi.org/10.1039/C5RA05069C CrossRefGoogle Scholar
  76. Kewang L, Weiren H, Zhiming C (2016) Application of epigallocatechin gallate in preparing drug for preventing or treating bladder tumor. CN106214673A (14 Dec 2016)Google Scholar
  77. Khan N, Asim M, Afaq F, Zaid MA, Mukhtar H (2008) A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice. Cancer Res 68:8555–8563.  https://doi.org/10.1158/0008-5472.CAN-08-0240 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Khaodee W, Aeungmaitrepirom W, Tuntulani T (2014) Effectively simultaneous naked-eye detection of cu(II), Pb(II), Al(III) and Fe(III) using cyanidin extracted from red cabbage as chelating agent. Spectrochim Acta – Part A Mol Biomol Spectrosc 126:98–104.  https://doi.org/10.1016/j.saa.2014.01.125 CrossRefGoogle Scholar
  79. Kim WK, Bang MH, Kim ES, Kang NE, Jung KC, Cho HJ, Park JHY (2005) Quercetin decreases the expression of ErbB2 and ErbB3 proteins in HT-29 human colon cancer cells. J Nutr Biochem 16:155–162.  https://doi.org/10.1016/j.jnutbio.2004.10.010 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Kim YA, Tarahovsky YS, Yagolnik EA, Kuznetsova SM, Muzafarov EN (2013) Lipophilicity of flavonoid complexes with iron(II) and their interaction with liposomes. Biochem Biophys Res Commun 431:680–685.  https://doi.org/10.1016/j.bbrc.2013.01.060 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Koizume S, Miyagi Y (2016) Lipid droplets: a key cellular organelle associated with cancer cell survival under Normoxia and hypoxia. Int J Mol Sci 17:1430.  https://doi.org/10.3390/ijms17091430 CrossRefGoogle Scholar
  82. Kostyuk VA, Potapovich AI, Strigunova EN, Kostyuk TV, Afanas’ev IB (2004) Experimental evidence that flavonoid metal complexes may act as mimics of superoxide dismutase. Arch Biochem Biophys 428:204–208.  https://doi.org/10.1016/j.abb.2004.06.008 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Kuntić V, Malesěev D, Radović Z, Vukojević V (2000) Spectrophotometric investigation of the complexing reaction between Rutin and Titanyloxalate anion in 50% ethanol. Monatshefte Für Chemie/Chem Mon 131:769–777.  https://doi.org/10.1007/s007060050024 CrossRefGoogle Scholar
  84. Lee E-J, Oh S-Y, Sung M-K (2012) Luteolin exerts anti-tumor activity through the suppression of epidermal growth factor receptor-mediated pathway in MDA-MB-231 ER-negative breast cancer cells. Food Chem Toxicol 50:4136–4143.  https://doi.org/10.1016/j.fct.2012.08.025 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Lee YJ, Lim T, Han MS, Lee S, Baek SH, Nan H, Lee C (2017) Anticancer effect of luteolin is mediated by downregulation of TAM receptor tyrosine kinases, but not interleukin-8, in non-small cell lung cancer cells. Oncol Rep 37:1219–1226.  https://doi.org/10.3892/or.2016.5336 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Lei C-S, Hou Y-C, Pai M-H, Lin M-T, Yeh S-L (2018) Effects of quercetin combined with anticancer drugs on metastasis-associated factors of gastric cancer cells: in vitro and in vivo studies. J Nutr Biochem 51:105–113.  https://doi.org/10.1016/j.jnutbio.2017.09.011 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Li J, Kang J, Lu J, Li X, Tang J, Zhang H, Zhang Y (2009) Determination of calf thymus DNA using resonance light-scattering quenching method based on the terbium (Ш) (Tb3+)/europium (Ш) (Eu3+)–quercetin system. J Lumin 129:906–911.  https://doi.org/10.1016/j.jlumin.2009.03.015 CrossRefGoogle Scholar
  88. Li J, Wang L, Bai H (2011) Synthesis, characterization, and anti-inflammatory activities of rare earth metal complexes of luteolin. Med Chem Res Chem Res 20:88–92.  https://doi.org/10.1007/s00044-009-9289-2 CrossRefGoogle Scholar
  89. Li S, Xie W, Cai H, Cai J, Yang P (2012) European journal of pharmaceutical sciences hydroxyl radical scavenging mechanism of human erythrocytes by quercetin – germanium (IV) complex. Eur J Pharm Sci 47:28–34.  https://doi.org/10.1016/j.ejps.2012.04.019 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Lian JP, Word B, Taylor S, Hammons GJ, Lyn-Cook BD (2004) Modulation of the constitutive activated STAT3 transcription factor in pancreatic cancer prevention: effects of indole-3-carbinol (I3C) and genistein. Anticancer Res 24:133–137PubMedPubMedCentralGoogle Scholar
  91. Liang Y-S, Qi W-T, Guo W, Wang C-L, Hu Z-B, Li A-K (2018) Genistein and daidzein induce apoptosis of colon cancer cells by inhibiting the accumulation of lipid droplets. Food Nutr Res 62.  https://doi.org/10.29219/fnr.v62.1384
  92. Liangen S, Mingming L (2017) Phellinus igniarius anticancer active flavones compound PBF-1, preparation method and application thereof. CN106943438A (14 July 2017)Google Scholar
  93. Liao ACH, Kuo C-C, Huang Y-C, Yeh C-W, Hseu Y-C, Liu J-Y, Hsu L-S (2014) Naringenin inhibits migration of bladder cancer cells through downregulation of AKT and MMP2. Mol Med Rep 10:1531–1536.  https://doi.org/10.3892/mmr.2014.2375 CrossRefGoogle Scholar
  94. Lim DY, Cho HJ, Kim J, Nho CW, Lee KW, Park JHY (2012) Luteolin decreases IGF-II production and downregulates insulin-like growth factor-I receptor signaling in HT-29 human colon cancer cells. BMC Gastroenterol 12:9.  https://doi.org/10.1186/1471-230X-12-9 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Lim W, Park S, Bazer FW, Song G (2017) Naringenin-induced apoptotic cell death in prostate cancer cells is mediated via the PI3K/AKT and MAPK signaling pathways. J Cell Biochem 118:1118–1131.  https://doi.org/10.1002/jcb.25729 CrossRefGoogle Scholar
  96. Ling D, Marshall GM, Liu PY, Xu N, Nelson CA, Iismaa SE, Liu T (2012) Enhancing the anticancer effect of the histone deacetylase inhibitor by activating transglutaminase. Eur J Cancer 48:3278–3287.  https://doi.org/10.1016/j.ejca.2012.02.067 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Lippert E, Ruemmele P, Obermeier F, Goelder S, Kunst C, Rogler G, Dunger N, Messmann H, Hartmann A, Endlicher E (2017) Anthocyanins prevent colorectal cancer development in a mouse model. Digestion 95:275–280. https://www.karger.com/DOI/10.1159/000475524 CrossRefGoogle Scholar
  98. Liqun R, Xiangjun L, Yadi W, Yang Z, Bo S, Yanwu H (2017) Anti-tumor pharmaceutical composition containing total flavonoids of apocynum venetum leaves. CN107115372A (1 Sept 2017)Google Scholar
  99. Lishu W, Dongyan C, Hongyu Z, Xin C, Donghong C, Jun G, Xiaojie L, Jia G, Chaonan W (2017) Euphorbia esula total flavonoid extract as well as preparation method and antitumor activity application thereof. CN107441148A (12 Aug 2017)Google Scholar
  100. Liu X, Zhang D, Hao Y, Liu Q, Wu Y, Liu X, Luo J, Zhou T, Sun B, Luo X, Xu J, Wang Q, Yang Z, Li L (2018) Cyanidin curtails renal cell carcinoma tumorigenesis. Cell Physiol Biochem 46:2517–2531. https://www.karger.com/DOI/10.1159/000489658 CrossRefGoogle Scholar
  101. Lopez-Lazaro M, Willmore E, Austin CA (2010) The dietary flavonoids myricetin and fisetin act as dual inhibitors of DNA topoisomerases I and II in cells. Mutat Res 696:41–47.  https://doi.org/10.1016/j.mrgentox.2009.12.010 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Lowe H, Toyang NJ, Bryant J (2016) Agent containing flavonoid derivatives for treating cancer and inflammation. US20160145230A1 (26 May 2016)Google Scholar
  103. Ma J, Cheng L, Liu H, Zhang J, Shi Y, Zeng F, Miele L, Sarkar FH, Xia J, Wang Z (2013) Genistein down-regulates miR-223 expression in pancreatic cancer cells. Curr Drug Targets 14:1150–1156CrossRefGoogle Scholar
  104. Ma WZ, Feng SL, Yao XJ, Yuan ZW, Liu L, Xie Y (2017) Use of tangeretin in cancer treatment. US9808439B2 (7 Nov 2017)Google Scholar
  105. Mai Z, Blackburn GL, Zhou J-R (2007) Soy phytochemicals synergistically enhance the preventive effect of tamoxifen on the growth of estrogen-dependent human breast carcinoma in mice. Carcinogenesis 28:1217–1223.  https://doi.org/10.1093/carcin/bgm004 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Malešev D, Kuntić V (2007) Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. J Serbian Chem Soc 72:921–939.  https://doi.org/10.2298/JSC0710921M CrossRefGoogle Scholar
  107. Marković JMD, Marković ZS, Brdarić TP, Pavelkić VM, Jadranin MB (2011) Iron complexes of dietary flavonoids: combined spectroscopic and mechanistic study of their free radical scavenging activity. Food Chem 129:1567–1577.  https://doi.org/10.1016/j.foodchem.2011.06.008 CrossRefGoogle Scholar
  108. Masahiro I, Hironori M (2017) Cancer cell proliferation inhibiting composition. JP2017178813A (05 Oct 2017)Google Scholar
  109. Massi A, Bortolini O, Ragno D, Bernardi T, Sacchetti G, Tacchini M, De Risi C (2017) Research progress in the modification of quercetin leading to anticancer agents. Molecules 22:1270–1296.  https://doi.org/10.3390/molecules22081270 CrossRefGoogle Scholar
  110. Mayr C, Wagner A, Neureiter D, Pichler M, Jakab M, Illig R, Berr F, Kiesslich T (2015) The green tea catechin epigallocatechin gallate induces cell cycle arrest and shows potential synergism with cisplatin in biliary tract cancer cells. BMC Complement Altern Med 15:194.  https://doi.org/10.1186/s12906-015-0721-5 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Michela M, Anna D, Censi V, Carrozzini B, Caliandro R, Denora N, Franco M, Veclani D, Melchior A, Tolazzi M, Mastrorilli P (2016) Triphenylphosphane Pt ( II ) complexes containing biologically active natural polyphenols: synthesis, crystal structure, molecular modeling and cytotoxic studies. J Inorg Biochem 163:346–361.  https://doi.org/10.1016/j.jinorgbio.2016.08.006 CrossRefGoogle Scholar
  112. Millimouno FM, Dong J, Yang L, Li J, Li X (2014) Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prev Res 7:1081 LP–1081107. http://cancerpreventionresearch.aacrjournals.org/content/7/11/1081.abstract CrossRefGoogle Scholar
  113. Mink PJ, Scrafford CG, Barraj LM, Harnack L, Hong C-P, Nettleton JA, Jacobs JDR (2007) Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr 85:895–909.  https://doi.org/10.1093/ajcn/85.3.895 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Mojsin M, Vicentic JM, Schwirtlich M, Topalovic V, Stevanovic M (2014) Quercetin reduces pluripotency, migration and adhesion of human teratocarcinoma cell line NT2/D1 by inhibiting Wnt/beta-catenin signaling. Food Funct 5:2564–2573.  https://doi.org/10.1039/c4fo00484a CrossRefPubMedPubMedCentralGoogle Scholar
  115. Monti E, Sinha BK (1994) Antiproliferative effect of genistein and adriamycin against estrogen-dependent and -independent human breast carcinoma cell lines. Anticancer Res 14:1221–1226. http://europepmc.org/abstract/MED/8074476 PubMedPubMedCentralGoogle Scholar
  116. Moses MA, Henry EC, Ricke WA, Gasiewicz TA (2015) The heat shock protein 90 inhibitor, (−)-epigallocatechin gallate, has anticancer activity in a novel human prostate cancer progression model. Cancer Prev Res 8:249–257. http://cancerpreventionresearch.aacrjournals.org/content/8/3/249.abstract CrossRefGoogle Scholar
  117. Murakami A, Ashida H, Terao J (2008) Multitargeted cancer prevention by quercetin. Cancer Lett 269:315–325.  https://doi.org/10.1016/j.canlet.2008.03.046 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Musialik M, Kuzmicz R, Pawlowski TS, Litwinienko G (2009) Acidity of hydroxyl groups: an overlooked influence on antiradical properties of flavonoids. J Org Chem 74:2699–2709.  https://doi.org/10.1021/jo802716v CrossRefPubMedPubMedCentralGoogle Scholar
  119. Naisheng B, Wei T, Qingchao L, Sen G, Meiqi Y, Mengqi T, Tianyi W, Tiantian G, Feng L (2017) Paeonia suffruticosa seed extract and application thereof as antitumor drug. CN107412221A (1 Dec 2017)Google Scholar
  120. Nakamura Y, Yogosawa S, Izutani Y, Watanabe H, Otsuji E, Sakai T (2009) A combination of indole-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. Mol Cancer 8:100.  https://doi.org/10.1186/1476-4598-8-100 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Naso LG, Lezama L, Valcarcel M, Salado C, Villacé P, Kortazar D, Ferrer EG, Williams PAM (2016a) Bovine serum albumin binding, antioxidant and anticancer properties of an oxidovanadium(IV) complex with luteolin. J Inorg Biochem 157:80–93.  https://doi.org/10.1016/j.jinorgbio.2016.01.021 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Naso LG, Badiola I, Clavijo JM, Valcarcel M, Salado C, Ferrer EG, Williams PAM (2016b) Inhibition of the metastatic progression of breast and colorectal cancer in vitro and in vivo in murine model by the oxidovanadium(IV) complex with luteolin. Bioorg Med Chem 24:6004–6011.  https://doi.org/10.1016/j.bmc.2016.09.058 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Navarro RE, Santacruz H, Inoue M (2005) Complexation of epigallocatechin gallate (a green tea extract, egcg) with Mn2+: nuclear spin relaxation by the paramagnetic ion. J Inorg Biochem 99:584–588.  https://doi.org/10.1016/j.jinorgbio.2004.11.013 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Ni Y, Du S, Kokot S (2007) Interaction between quercetin-copper(II) complex and DNA with the use of the neutral red dye fluorophor probe. Anal Chim Acta 584:19–27.  https://doi.org/10.1016/j.aca.2006.11.006 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Nianzeng X, Feiya Y, Dong C, Lingquan M (2018) Application of drug combination of quercetin and curcumin in preparation of product for treating prostatic cancer. CN107595834A (19 Jan 2018)Google Scholar
  126. Niu S, Han B, Cao W, Zhang S (2009) Sensitive DNA biosensor improved by Luteolin copper(II) as indicator based on silver nanoparticles and carbon nanotubes modified electrode. Anal Chim Acta 651:42–47.  https://doi.org/10.1016/j.aca.2009.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Ozturk S, Alp E, Yar Saglam A, Konac E, Menevse E (2018) The effects of thymoquinone and genistein treatment on telomerase activity, apoptosis, angiogenesis, and survival in thyroid cancer cell lines. J Cancer Res Ther 14:328–334.  https://doi.org/10.4103/0973-1482.202886 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Pallauf K, Duckstein N, Rimbach G (2016) A literature review of flavonoids and lifespan in model organisms.  https://doi.org/10.1017/S0029665116000720 CrossRefGoogle Scholar
  129. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47.  https://doi.org/10.1017/jns.2016.41 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Park JH, Oh EJ, Choi YH, Kang CD, Kang HS, Kim DK, Kang KI, Yoo MA (2001) Synergistic effects of dexamethasone and genistein on the expression of Cdk inhibitor p21WAF1/CIP1 in human hepatocellular and colorectal carcinoma cells. Int J Oncol 18:997–1002PubMedPubMedCentralGoogle Scholar
  131. Park S-H, Ham S, Kwon TH, Kim MS, Lee DH, Kang J-W, Oh S-R, Yoon D-Y (2014) Luteolin induces cell cycle arrest and apoptosis through extrinsic and intrinsic signaling pathways in MCF-7 breast cancer cells. J Environ Pathol Toxicol Oncol 33:219–231CrossRefGoogle Scholar
  132. Park S, Lim W, Bazer FW, Song G (2017) Naringenin suppresses growth of human placental choriocarcinoma via reactive oxygen species-mediated P38 and JNK MAPK pathways. Phytomedicine.  https://doi.org/10.1016/j.phymed.2017.08.026 CrossRefGoogle Scholar
  133. Parveen S, Tabassum S, Arjmand F (2016) Human topoisomerase I mediated cytotoxicity profile of l-valine-quercetin diorganotin(IV) antitumor drug entities. J Organomet Chem 823:23–33.  https://doi.org/10.1016/j.jorganchem.2016.09.015 CrossRefGoogle Scholar
  134. Patel K, Singh GK, Patel DK (2014) A review on pharmacological and analytical aspects of naringenin. Chin J Integr Med.  https://doi.org/10.1007/s11655-014-1960-x CrossRefGoogle Scholar
  135. Petroni K, Trinei M, Fornari M, Calvenzani V, Marinelli A, Micheli LA, Pilu R, Matros A, Mock H-P, Tonelli C, Giorgio M (2017) Dietary cyanidin 3-glucoside from purple corn ameliorates doxorubicin-induced cardiotoxicity in mice. Nutr Metab Cardiovasc Dis 27:462–469.  https://doi.org/10.1016/j.numecd.2017.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042CrossRefGoogle Scholar
  137. Pratheeshkumar P, Budhraja A, Son Y-O, Wang X, Zhang Z, Ding S, Wang L, Hitron A, Lee J-C, Xu M, Chen G, Luo J, Shi X (2012) Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS One 7:e47516.  https://doi.org/10.1371/journal.pone.0047516 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Primikyri A, Mazzone G, Lekka C, Tzakos AG, Russo N, Gerothanassis IP (2015) Understanding zinc(II) chelation with quercetin and luteolin: a combined NMR and theoretical study. J Phys Chem B 119:83–95.  https://doi.org/10.1021/jp509752s CrossRefPubMedPubMedCentralGoogle Scholar
  139. Qian P, Yan L-J, Li Y-Q, Yang H-T, Duan H-Y, Wu J-T, Fan X-W, Wang S-L (2018) Cyanidin ameliorates cisplatin-induced cardiotoxicity via inhibition of ROS-mediated apoptosis. Exp Ther Med 15:1959–1965.  https://doi.org/10.3892/etm.2017.5617 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Qizhen D, Jie Q, Yinglei X, Kai W, Min W (2017a) HUT-EGCG (11-hydroxyundecane-1-thiol-epigallocatechin gallate) nanoparticle solution system and preparation method thereof. CN106692049A (24 May 2017)Google Scholar
  141. Qizhen D, Jie Q, Yinglei X, Kai W, Min W (2017b) 3MH (3-mercapto-1-hexanol)-EGCG (epigallocatechin gallate) nanoparticle solution system and preparation method thereof. CN106729724A (31 May 2017)Google Scholar
  142. Ramezani F, Samadi N, Mostafavi-Pour Z (2017) Sequential therapy of breast cancer cell lines with vitamin C and quercetin improves the efficacy of chemotherapeutic drugs. Nutr Cancer 69:881–891.  https://doi.org/10.1080/01635581.2017.1339813 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Ramos J, Hatkevich T, Eanes L, Santos-Sanchez I, Patel YM (2017) Naringenin inhibits proliferation and survival of tamoxifen- resistant breast cancer cells. In: Van Pham P (ed) Breast cancer. InTech Open, Rijeka, pp 541–556.  https://doi.org/10.5772/66698 CrossRefGoogle Scholar
  144. Ravishankar D, Watson KA, Boateng SY, Green RJ, Greco F, Osborn HMI (2015) Exploring quercetin and luteolin derivatives as antiangiogenic agents. Eur J Med Chem 97:259–274.  https://doi.org/10.1016/j.ejmech.2015.04.056 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Raza A, Xu X, Xia L, Xia C, Tang J, Ouyang Z (2016) Quercetin-iron complex: synthesis, characterization, antioxidant, DNA binding, DNA cleavage, and antibacterial activity studies. J Fluoresc 26:2023–2031.  https://doi.org/10.1007/s10895-016-1896-y CrossRefPubMedPubMedCentralGoogle Scholar
  146. Ren J, Meng S, Lekka CE, Kaxiras E (2008) Complexation of flavonoids with iron: structure and optical signatures. J Phys Chem B 112:1845–1850.  https://doi.org/10.1021/jp076881e CrossRefPubMedPubMedCentralGoogle Scholar
  147. Rong H, Jinrong L, Yajing W, Xiaoting Q, Qianming D, Jingjing T, Lei T, Ping L, Huaijun F (2018) Genistein derivatives, preparation method and application in pharmacy. CN105732560B (13 March 2018)Google Scholar
  148. Roy S, Mallick S, Chakraborty T, Ghosh N, Singh AK, Manna S, Majumdar S (2015) Synthesis, characterisation and antioxidant activity of luteolin–vanadium(II) complex. Food Chem 173:1172–1178.  https://doi.org/10.1016/j.foodchem.2014.10.141 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Roy S, Das R, Ghosh B, Chakraborty T (2018) Deciphering the biochemical and molecular mechanism underlying the in vitro and in vivo chemotherapeutic efficacy of ruthenium quercetin complex in colon cancer. Mol Carcinog 57:700–721.  https://doi.org/10.1002/mc.22792 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Russo M, Russo GL, Daglia M, Kasi PD, Ravi S, Nabavi SF, Nabavi SM (2016) Understanding genistein in cancer: the “good” and the “bad” effects: a review. Food Chem 196:589–600.  https://doi.org/10.1016/j.foodchem.2015.09.085 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Rygula A, Wrobel TP, Szklarzewicz J, Baranska M (2013) Raman and UV–vis spectroscopy studies on luteolin–Al(III) complexes. Vib Spectrosc 64:21–26.  https://doi.org/10.1016/j.vibspec.2012.10.005 CrossRefGoogle Scholar
  152. Sanna D, Ugone V, Lubinu G, Micera G, Garribba E (2014) Behavior of the potential antitumor V IV O complexes formed by flavonoid ligands. 1. Coordination modes and geometry in solution and at the physiological pH ☆. J Inorg Biochem 140:173–184.  https://doi.org/10.1016/j.jinorgbio.2014.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Sarria ALF, Vilela AFL, Frugeri BM, Fernandes JB, Carlos RM, da Silva MF d GF, Cass QB, Cardoso CL (2016) Copper (II) and zinc (II) complexes with flavanone derivatives: identification of potential cholinesterase inhibitors by on-flow assays. J Inorg Biochem 164:141–149.  https://doi.org/10.1016/j.jinorgbio.2016.09.010 CrossRefGoogle Scholar
  154. Selvaraj S, Krishnaswamy S, Devashya V, Sethuraman S, Krishnan UM (2014) Flavonoid-metal ion complexes: a novel class of therapeutic agents. Med Res Rev 34:677–702.  https://doi.org/10.1002/med.21301 CrossRefGoogle Scholar
  155. Sharma A, Kashyap D, Sak K, Tuli HS, Sharma AK (2018) Therapeutic charm of quercetin and its derivatives: a review of research and patents. Pharm Pat Anal 7(1):15–32.  https://doi.org/10.4155/ppa-2017-0030 CrossRefGoogle Scholar
  156. Shedid H, Ismail EA, Mohamed AF (2017) Assessment of anticancer potential of quercetin against breast, colon and colorectal cancer cell lines and related cell cycle and apoptotic gene profile: in vitro study. Imp J Interdiscip Res:433–437Google Scholar
  157. Sheng H, Jinhua Y, Hongxing L, Shaolong Z (2015) Derivative with 5,2′-dihydroxy-4′-methoxy-3-geranyl flavonoid skeleton and preparation method and application thereof, CN105001191A, 28 Oct 2015Google Scholar
  158. Shi S, Zhang Y, Chen X, Peng M (2011) Investigation of flavonoids bearing different substituents on ring C and their Cu2+ complex binding with bovine serum albumin: structure-affinity relationship aspects. J Agric Food Chem 59:10761–10769.  https://doi.org/10.1021/jf2027523 CrossRefPubMedPubMedCentralGoogle Scholar
  159. Shi D, Xu Y, Du X, Chen X, Zhang X, Lou J, Li M, Zhuo J (2015) Co-treatment of THP-1 cells with naringenin and curcumin induces cell cycle arrest and apoptosis via numerous pathways. Mol Med Rep 12:8223–8228.  https://doi.org/10.3892/mmr.2015.4480 CrossRefGoogle Scholar
  160. Shin YH, Uk WS, Won CY (2016) Usage of genistein as an anticancer drug in p53-mutated solid tumors or paclitaxel-resistant cancer. KR101678791B1 (23 Nov 2016)Google Scholar
  161. Shukla R, Barve V, Bhonde R (2004) Synthesis, structural properties and insulin-enhancing potential of bis (quercetinato) oxovanadium (IV) conjugate. Bioorg Med Chem Lett 14:4961–4965.  https://doi.org/10.1016/j.bmcl.2004.07.020 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Sinha S, Amin H, Nayak D, Bhatnagar M, Kacker P, Chakraborty S, Kitchlu S, Vishwakarma R, Goswami A, Ghosal S (2015) Assessment of microtubule depolymerization property of flavonoids isolated from Tanacetum gracile in breast cancer cells by biochemical and molecular docking approach. Chem Biol Interact 239:1–11.  https://doi.org/10.1016/j.cbi.2015.06.034 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Song S, Cheng D, Wei S, Wang X, Niu Y, Qi W, Wang C (2018) Preventive effect of genistein on AOM/DSS-induced colonic neoplasm by modulating the PI3K/AKT/FOXO3 signaling pathway in mice fed a high-fat diet. J Funct Foods 46:237–242.  https://doi.org/10.1016/j.jff.2018.05.006 CrossRefGoogle Scholar
  164. Spoerlein C, Mahal K, Schmidt H, Schobert R (2013) Effects of chrysin, apigenin, genistein and their homoleptic copper(II) complexes on the growth and metastatic potential of cancer cells. J Inorg Biochem 127:107–115.  https://doi.org/10.1016/j.jinorgbio.2013.07.038 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Sun S-L, He G-Q, Yu H-N, Yang J-G, Borthakur D, Zhang L-C, Shen S-R, Das UN (2008) Free Zn(2+) enhances inhibitory effects of EGCG on the growth of PC-3 cells. Mol Nutr Food Res 52:465–471.  https://doi.org/10.1002/mnfr.200700172 CrossRefPubMedPubMedCentralGoogle Scholar
  166. Sun S, Dai Y, Lu Z, Li M, Zhai Z, Ren X, Li D (2016) Epigallocatechin gallate enhances 5-fluorouracil antitumor activity in MCF7 cells by regulating the expression of Bcl-xL. Int J Clin Exp Pathol 9:4251–4259Google Scholar
  167. Tabassum S, Zaki M, Afzal M, Arjmand F (2013) New modulated design and synthesis of quercetin-Cu(II)/Zn(II)-Sn2(IV) scaffold as anticancer agents: in vitro DNA binding profile, DNA cleavage pathway and Topo-I activity. Dalton Trans 42:10029–10041.  https://doi.org/10.1039/c3dt50646k CrossRefPubMedPubMedCentralGoogle Scholar
  168. Tan M, Zhu J, Pan Y, Chen Z, Liang H, Liu H, Wang H (2009) Synthesis, cytotoxic activity, and DNA binding properties of copper (II) complexes with hesperetin, naringenin, and apigenin. Bioinorg Chem Appl 2009:347872.  https://doi.org/10.1155/2009/347872 CrossRefGoogle Scholar
  169. Tan J, Zhu L, Wang B (2010) From GC-rich DNA binding to the repression of survivin gene for quercetin nickel (II) complex: implications for cancer therapy. Biometals 23:1075–1084.  https://doi.org/10.1007/s10534-010-9353-x CrossRefGoogle Scholar
  170. Tang D, Shen S, Chen X, Zhang Y, Xu C (2004) Interaction of catechins with aluminum in vitro. J Zhejiang Univ Sci 5:668–675CrossRefGoogle Scholar
  171. Tingke T, Weixia S, Lei T, Jingliang Z, Guangyu Y 2016 Synthesis of quercetin-3-O-acetate and application of quercetin-3-O-acetate to tumor resistance. CN105503804A (20April 2016)Google Scholar
  172. Tummala R, Lou W, Gao AC, Nadiminty N (2017) Quercetin targets hnRNPA1 to overcome enzalutamide resistance in prostate cancer cells. Mol Cancer Ther 16:2770 LP–2772779. http://mct.aacrjournals.org/content/16/12/2770.abstract CrossRefGoogle Scholar
  173. Tuorkey MJ (2016) Molecular targets of luteolin in cancer. Eur J Cancer Prev 25:65–76.  https://doi.org/10.1097/CEJ.0000000000000128 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Uivarosi V, Munteanu A-C (2017) Flavonoid complexes as promising anticancer metallodrugs. In: Justino J (ed) Flavonoids – from biosynthesis to human health. InTech.  https://doi.org/10.5772/711 Google Scholar
  175. Uivarosi V, Badea M, Olar R, Ștefan Velescu B, Aldea V (2016) Synthesis and characterization of a new complex of oxovanadium (IV) with naringenin, as potential insulinomimetic agent. Farmacia 64:175–180Google Scholar
  176. Vajdy M (2011) Immunomodulatory properties of vitamins, flavonoids and plant oils and their potential as vaccine adjuvants and delivery systems. Expert Opin Biol Ther 11:1501–1513.  https://doi.org/10.1517/14712598.2011.623695 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Vimalraj S, Rajalakshmi S, Raj D, Vinoth S, Deepak T, Gopinath V, Murugan K, Chatterjee S (2018) Materials Science & Engineering C Mixed-ligand copper (II) complex of quercetin regulate osteogenesis and angiogenesis. Mater Sci Eng C 83:187–194.  https://doi.org/10.1016/j.msec.2017.09.005 CrossRefGoogle Scholar
  178. Wang H, Yang Z, Wang B (2006a) Synthesis, characterization and the antioxidative activity of copper (II), zinc (II) and nickel (II) complexes with naringenin. Transit Met Chem 31:470–474.  https://doi.org/10.1007/s11243-006-0015-3 CrossRefGoogle Scholar
  179. Wang B, Yang Z-Y, Wang Q, Cai T, Crewdson P (2006b) Synthesis, characterization, cytotoxic activities, and DNA-binding properties of the La(III) complex with Naringenin Schiff-base. Bioorg Med Chem 14:1880–1888.  https://doi.org/10.1016/j.bmc.2005.10.031 CrossRefPubMedPubMedCentralGoogle Scholar
  180. Wu D (2017) Flavonoid compositions for the treatment of cancer. US20170087125A1 (20 April 2017)Google Scholar
  181. Xia J, Duan Q, Ahmad A, Bao B, Banerjee S, Shi Y, Ma J, Geng J, Chen Z, Rahman KMW, Miele L, Sarkar FH, Wang Z (2012) Genistein inhibits cell growth and induces apoptosis through up-regulation of miR-34a in pancreatic cancer cells. Curr Drug Targets 13:1750–1756CrossRefGoogle Scholar
  182. Xia J, Cheng L, Mei C, Ma J, Shi Y, Zeng F, Wang Z, Wang Z (2014) Genistein inhibits cell growth and invasion through regulation of miR-27a in pancreatic cancer cells. Curr Pharm Des 20:5348–5353CrossRefGoogle Scholar
  183. Xiangyu C, Dan L, Yonglin H, Shuai W, Hou Yi H, Yuchi K, Mingze S (2017) Anti-breast cancer health care product containing rice bran flavonoids. CN107137619A (8 Sept 2017)Google Scholar
  184. Xiansheng M, Yongrui B, Shuai W, Cong M (2018) Preparation method of total flavonoids of schizonepeta tenuifolia briq and application of total flavonoids of schizonepeta tenuifolia briq to resistance to tumors. CN104352562B (16 March 2018)Google Scholar
  185. Xiaoyan X, Xia L, Nan J, Mengyao Y, Wei W (2016) Flavonoid compound TA34a and preparation method and application thereof. CN105669796A (15 Jun 2016)Google Scholar
  186. Xuan Z, Honglin L, Huiran Z, Yani L, Lifang H, Zhanfeng J, Yucong X, Xiaorun S, Wei Z (2017) Inhibition of transmembrane member 16A calcium-activated chloride channels by natural flavonoids contributes to flavonoid anticancer effects. Br J Pharmacol 174:2334–2345.  https://doi.org/10.1111/bph.13841 CrossRefGoogle Scholar
  187. Xue Y, Haolun X, Hongtao D, Xia L, Helu Y (2018) Functional drug-loaded system used for treating lung tumor and preparation method and application thereof. CN107625732A (26 Jan 2018)Google Scholar
  188. Yadav P, Jaswal V, Sharma A, Kashyap D, Tuli HS, Garg VK, Das SK, Srinivas R (2018) Celastrol as a pentacyclic triterpenoid with chemopreventive properties. Pharm Pat Anal.  https://doi.org/10.4155/ppa-2017-0035 CrossRefGoogle Scholar
  189. Yan G-R, Zou F-Y, Dang B-L, Zhang Y, Yu G, Liu X, He Q-Y (2012) Genistein-induced mitotic arrest of gastric cancer cells by downregulating KIF20A, a proteomics study. Proteomics 12:2391–2399.  https://doi.org/10.1002/pmic.201100652 CrossRefPubMedPubMedCentralGoogle Scholar
  190. Yanjun S, Julie, Jinguang, Ji B, Wang J, Meiling G, Hao Z, Yanli Z, Hui C (2015a) Preparation method and application of prenyl flavonoids having an anti-breast cancer activity. CN105130940B, 21 Sept 2015Google Scholar
  191. Yanjun S, Jinguang S, Yanli Z, Baoyu J, Junmin W, Lixin P, Meiling G, Zhiyou H, Hui C (2015b) Preparation method and application of prenylated flavonoid compound with anti-hepatoma activity. CN105131008A, 9 Dec 2015Google Scholar
  192. Yaozhou Z, Huanhuan W, Li P, Chao H, Shangwen L, Hong M, Shanshan Y, Hong L, Simiao D, Qijing G (2017) Extraction Armillaria genistein monomer compound and its application. CN105601603B (19 Dec 2017)Google Scholar
  193. Yi X, Yaxiong S, Zhengwei Z, Mimi C, Biyao L (2017) Bola type quercetin derivatives and preparation method and application thereof. CN107056739A (18 Aug 2017)Google Scholar
  194. Yin Z, Henry EC, Gasiewicz TA (2009) Epigallocatechin-3-gallate is a novel Hsp90 inhibitor. Biochemistry 48:336–345.  https://doi.org/10.1021/bi801637q CrossRefPubMedPubMedCentralGoogle Scholar
  195. Yonghua Y, Huijuan L, Yixuan G, Xiaoyu J, Xinhui Y, Yong B, Zhuqing Z, Fanghui S, Xinsheng L (2017) Flavonoid compound and application thereof to preparation of antitumor drugs. CN107459502A (12 Dec 2017)Google Scholar
  196. Yongli Z, Wei F, Dong C, Ying W, Huainian Z (2018) Luteolin-glycyrrhizic acid conjugated bovine serum albumin drug-loaded nanoparticles and preparation and application thereof. CN107670052A (09 Feb 2018)Google Scholar
  197. Yu H-N, Shen S-R, Yin J-J (2007) Effects of interactions of EGCG and Cd(2+) on the growth of PC-3 cells and their mechanisms. Food Chem Toxicol 45:244–249.  https://doi.org/10.1016/j.fct.2006.08.015 CrossRefPubMedPubMedCentralGoogle Scholar
  198. Yuan C-H, Horng C-T, Lee C-F, Chiang N-N, Tsai F-J, Lu C-C, Chiang J-H, Hsu Y-M, Yang J-S, Chen F-A (2017) Epigallocatechin gallate sensitizes cisplatin-resistant oral cancer CAR cell apoptosis and autophagy through stimulating AKT/STAT3 pathway and suppressing multidrug resistance 1 signaling. Environ Toxicol 32:845–855.  https://doi.org/10.1002/tox.22284 CrossRefPubMedPubMedCentralGoogle Scholar
  199. Yukun L, Huaqiang Z, Zhimin H, Yuzhong Z, Li Z, Riaz K, Maslova A, Xianting D, Hui Y (2016) Drug containing flavonoid compound composition and application thereof. CN106176711A (07 Dec 2016)Google Scholar
  200. Yuzhen Z, Haigen L, Yu L (2017) Genistein exerts potent antitumour effects alongside anaesthetic, propofol, by suppressing cell proliferation and nuclear factor-κB-mediated signalling and through upregulating microRNA-218 expression in an intracranial rat brain tumour model. J Pharm Pharmacol 69:1565–1577.  https://doi.org/10.1111/jphp.12781 CrossRefGoogle Scholar
  201. Zhang H, Chen K (2012) Biophysical studies on the site-selective binding of a synthesized selenium—quercetin complex on a protein. J Solut Chem 41:915–925.  https://doi.org/10.1007/s10953-012-9844-1 CrossRefGoogle Scholar
  202. Zhang Y, Li Q, Zhou D, Chen H (2013) Genistein, a soya isoflavone, prevents azoxymethane-induced up-regulation of WNT/beta-catenin signalling and reduces colon pre-neoplasia in rats. Br J Nutr 109:33–42.  https://doi.org/10.1017/S0007114512000876 CrossRefPubMedPubMedCentralGoogle Scholar
  203. ZHANG H, ZHONG XIA, ZHANG X, SHANG D, ZHOU YI, ZHANG C (2016) Enhanced anticancer effect of ABT-737 in combination with naringenin on gastric cancer cells. Exp Ther Med 11:669–673.  https://doi.org/10.3892/etm.2015.2912 CrossRefPubMedPubMedCentralGoogle Scholar
  204. Zhang W, Yin G, Dai J, Sun Y, Hoffman RM, Yang Z, Fan Y (2017) Chemoprevention by quercetin of Oral squamous cell carcinoma by suppression of the NF-κB signaling pathway in DMBA-treated hamsters. Anticancer Res 37:4041–4049. http://ar.iiarjournals.org/content/37/8/4041.abstract CrossRefGoogle Scholar
  205. Zhang L, Xu X, Jiang T, Wu K, Ding C, Liu Z, Zhang X, Yu T, Song C (2018) Citrus aurantium Naringenin prevents osteosarcoma progression and recurrence in the patients who underwent osteosarcoma surgery by improving antioxidant capability. Oxidative Med Cell Longev 2018:8713263.  https://doi.org/10.1155/2018/8713263 CrossRefGoogle Scholar
  206. Zhengang Z, Rui Z, Ruihai L (2017) Synergistic anti-tumor polyphenol composition and application. CN107397740A (28 Nov 2017)Google Scholar
  207. Zhiling W, Jingdong L, Hao W, Huimin L, Guangjun X, Lingyan G, Kui Q, Yuanzhang L (2016) Fructus sophorae total flavonoid extract with broad-spectrum anti-tumor activity and preparation method and application of fructus sophorae total flavonoid extract. CN105343158A (24 Feb 2016)Google Scholar
  208. Zhiping L, Chunfang G, Yanmin H, Jianguo C (2017) Multi-hydroxyimino naringenin derivatives, preparation method and application. CN105037314 B (24 Oct 2017)Google Scholar
  209. Zhongqiu L, Dongfeng P, Yang G, Kedier M, Peng W, Linlin L, Lijun Z (2016) Flavonoid compound targeting tumor cells and preparation method of flavonoid compound. CN106008481A (12 Oct 2016)Google Scholar
  210. Zhou J, Wang L, Wang J, Tang N (2001a) Antioxidative and anti-tumour activities of solid quercetin metal (II) complexes. Transit Met Chem 26:57–63CrossRefGoogle Scholar
  211. Zhou J, Wang L, Wang J, Tang N (2001b) Synthesis, characterization, antioxidative and antitumor activities of solid quercetin rare earth(III) complexes. J Inorg Biochem 83:41–48.  https://doi.org/10.1016/S0162-0134(00)00128-8 CrossRefPubMedPubMedCentralGoogle Scholar
  212. Zhou P, Wang C, Hu Z, Chen W, Qi W, Li A (2017) Genistein induces apoptosis of colon cancer cells by reversal of epithelial-to-mesenchymal via a Notch1/NF-κB/slug/E-cadherin pathway. BMC Cancer 17:813.  https://doi.org/10.1186/s12885-017-3829-9 CrossRefPubMedPubMedCentralGoogle Scholar
  213. Zuohuan M, Jiming J, Zongquan W, Li Q, Jian S, Bing Y, Liang Junqing L, Qingxian C, Zhifang G, Huixin L, Zhixin W, Xinniu W, Xiaonan W (2018) Flavonoid derivatives and a preparation method and uses. CN108017608A (11 May 2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Valentina Uivarosi
    • 1
  • Alexandra Cristina Munteanu
    • 1
  • Ajay Sharma
    • 2
  • Hardeep Singh Tuli
    • 3
  1. 1.Department of General and Inorganic Chemistry, Faculty of PharmacyCarol Davila University of Medicine and PharmacyBucharestRomania
  2. 2.Department of ChemistryCareer Point UniversityHamirpurIndia
  3. 3.Department of BiotechnologyMaharishi Markandeshwar (Deemed to be University)Mullana-AmbalaIndia

Personalised recommendations