Analytical Techniques for the Identification and Quantification of Flavonoids

  • Ashun Chaudhary
  • Praveen Kumar
  • Vivek Sheel Jaswal
  • Abhinay Thakur


Flavonoids are of great interest in relation to their actions in living organisms and their role in biological and physiological interactions. In regard to the significance of the pharmaceutical nature of flavonoids, the focus at present is on rapid, cheap, reproducible, and precise analytical procedures to measure flavonoids in a variety of matrices. These procedures are necessary for quality control, for the standardization of extracts, for determining the number of flavonoids, and for determining the pharmacokinetic properties of flavonoids in humans. This chapter outlines various analytical procedures, such as liquid chromatography, gas chromatography, capillary electrophoresis, and thin-layer chromatography, for the investigation of key flavonoids. Because of the growing interest in flavonoid structure, the focus will be on the use of tandem-mass spectrometric techniques for the characterization of some significant flavonoid subclasses, and on the possibility of using combined diode-array detector ultraviolet and nuclear magnetic resonance for unambiguous detection.


Flavonol–quercetin Flavone–luteolin Isoflavone–genistein Anthocyanidin–cyanidin Flavanone–naringenin Flavan-3-ol–epigallocatechin gallate (EGCG) 


  1. Avula B, Wang YH, Rumalla CS, Smillie TJ, Khan IA (2012) Simultaneous determination of alkaloids and flavonoids from aerial parts of Passiflora species and dietary supplements using UPLC-UV-MS and HPTLC. Nat Prod Commun 7(9):1177–1180Google Scholar
  2. Baghel US, Nagar A, Pannu MS, Singh D, Yadav R (2017) HPLC and HPTLC methods for simultaneous estimation of quercetin and curcumin in polyherbalformulation. Indian J Pharm Sci 79(2):197–203CrossRefGoogle Scholar
  3. Berthod A, Ruiz-Angel MJ, Carda-Broch S (2009) Countercurrent chromatography: people and applications. J Chromatogr A 1216(19):4206–4217CrossRefGoogle Scholar
  4. Bhandari P, Kumar N, Gupta AP, Singh B, Kaul VK (2007) A rapid RP-HPTLC densitometry method for simultaneous determination of major flavonoids in important medicinal plants. J Sep Sci 30(13):2092–2096CrossRefGoogle Scholar
  5. Bhatt V, Sharma S, Kumar N, Sharma U, Singh B (2017) Simultaneous quantification and identification of flavonoids, lignans, coumarin and amides in leaves of Zanthoxylum armatum using UPLC-DAD-ESI-QTOF-MS/MS. J Pharm Biomed Anal 132:46–55CrossRefGoogle Scholar
  6. Bilu V, Male Ž, Golja P, Cetina-Čižmek B (2005) HPTLC determination of flavonoids and phenolic acids in some Croatian Stachys taxa. J Planar Chromatogr 18(104):269–273CrossRefGoogle Scholar
  7. Braunberger C, Zehl M, Conrad J, Fischer S, Adhami HR, Beifuss U, Krenn L (2013) LC-NMR, NMR, and LC-MS identification and LC-DAD quantification of flavonoids and ellagic acid derivatives in Droserapeltata. J Chromatogr B 932:111–116CrossRefGoogle Scholar
  8. Canini A, Alesiani D, D’Arcangelo G, Tagliatesta P (2007) Gas chromatography-mass spectrometry analysis of phenolic compounds from Carica papaya L. leaf. J Food Compos Anal 20(7):584–590CrossRefGoogle Scholar
  9. Chaudhary A, Sharma U, Vig AP, Singh B, Arora S (2014) Free radical scavenging, antiproliferative activities and profiling of variations in the level of phytochemicals in different parts of broccoli (Brassica oleracea italica). Food Chem 148:373–380CrossRefGoogle Scholar
  10. Chaudhary A, Choudhary S, Sharma U, Vig AP, Singh B, Arora S (2018) Purple head broccoli (Brassica oleracea L. var. italicaPlenck), a functional food crop for antioxidant and anticancer potential. J Food SciTechnol 55(5):1806–1815Google Scholar
  11. Chen LJ, Games DE, Jones J (2003) Isolation and identification of four flavonoid constituents from the seeds of Oroxylum indicum by high-speed counter-current chromatography. J Chromatogr A 988(1):95–105CrossRefGoogle Scholar
  12. Chen LJ, Song H, Games DE, Sutherland IA (2005) HSCCC-MS study of flavonoids in the extracts from the seeds of Oroxylum indicum. J Liq Chromatogr Relat Technol 28(12–13):1993–2003CrossRefGoogle Scholar
  13. Chen XJ, Ji H, Wang YT, Li SP (2008) Simultaneous determination of seven flavonoids in Epimedium using pressurized liquid extraction and capillary electrochromatography. J Sep Sci 31(5):881–887CrossRefGoogle Scholar
  14. Cui J, Yue Y, Tang F, Wang J (2011) HPTLC analysis of the flavonoids in eight species of Indocalamus leaves. J Planar Chromatogr Mod TLC 24(5):394–399CrossRefGoogle Scholar
  15. Duan K, Yuan Z, Guo W, Meng Y, Cui Y, Kong D, Zhang L, Wang N (2011) LC-MS/MS determination and pharmacokinetic study of five flavone components after solvent extraction/acid hydrolysis in rat plasma after oral administration of Verbena officinalis L. extract. J Ethnopharmacol 135(2):201–208CrossRefGoogle Scholar
  16. Engida AM, Kasim NS, Tsigie YA, Ismadji S, Huynh LH, Ju YH (2013) Extraction, identification and quantitative HPLC analysis of flavonoids from sarangsemut (Myrmecodiapendan). Ind Crop Prod 41:392–396CrossRefGoogle Scholar
  17. Fabre N, Rustan I, de Hoffmann E, Quetin-Leclercq J (2001) Determination of flavone, flavonol, and flavanoneaglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J Am Soc Mass Spectrom 12(6):707–715CrossRefGoogle Scholar
  18. Farag MA, Huhman DV, Lei Z, Sumner LW (2007) Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC–UV–ESI–MS and GC–MS. Phytochemistry 68(3):342–354CrossRefGoogle Scholar
  19. Fonseca FN, Tavares MF, Horváth C (2007) Capillary electrochromatography of selected phenolic compounds of Chamomilla recutita. J Chromatogr A 1154(1–2):390–399CrossRefGoogle Scholar
  20. Frison-Norrie S, Sporns P (2002) Identification and quantification of flavonol glycosides in almond seedcoats using MALDI-TOF MS. J Agric Food Chem 50(10):2782–2787CrossRefGoogle Scholar
  21. Füzfai Z, Molnár-Perl I (2007) Gas chromatographic-mass spectrometric fragmentation study of flavonoids as their trimethylsilyl derivatives: analysis of flavonoids, sugars, carboxylic and amino acids in model systems and in citrus fruits. J Chromatogr A 1149(1):88–101CrossRefGoogle Scholar
  22. Gonnella NC (2013) LC-NMR: expanding the limits of structure elucidation. CRC Press, Boca RatonCrossRefGoogle Scholar
  23. He D, Huang Y, Ayupbek A, Gu D, Yang Y, Aisa HA, Ito Y (2010) Separation and purification of flavonoids from blackcurrant leaves by high-speed countercurrent chromatography and preparative HPLC. J Liq Chromatogr Relat Technol 33(5):615–628CrossRefGoogle Scholar
  24. Hostettmann K, Terreaux C (2000) Medium pressure liquid chromatography. In: Wilson ID (Chief ed) Encyclopedia of separation science. Academic, San Diego, pp 3296–3303CrossRefGoogle Scholar
  25. Huang Y, Feng Y, Tang G, Li M, Zhang T, Fillet M, Crommen J, Jiang Z (2017) Development and validation of a fast SFC method for the analysis of flavonoids in plant extracts. J Pharm Biomed Anal 140:384–391CrossRefGoogle Scholar
  26. Lafont R, Dauphin-Villemant C, Warren JT, Rees H (2012) Ecdysteroid chemistry and biochemistry. In: Gilbert LI (ed) Insect endocrinology. Academic, London, pp 106–176CrossRefGoogle Scholar
  27. Lee JS, Kim DH, Liu KH, Oh TK, Lee CH (2005) Identification of flavonoids using liquid chromatography with electrospray ionization and ion trap tandem mass spectrometry with an MS/MS library. Rapid Commun Mass Spectrom 19(23):3539–3548CrossRefGoogle Scholar
  28. Lee YS, Kim SH, Kim JK, Lee S, Jung SH, Lim SS (2011) Preparative isolation and purification of seven isoflavones from Belamcanda chinensis. Phytochem Anal 22(5):468–473CrossRefGoogle Scholar
  29. Li J, Zhang X, Yu Q, Fu X, Wang W (2014) One-step separation of four flavonoids from Herba Salviae Plbeiae by HSCCC. J ChromatogrSci 52(10):1288–1293CrossRefGoogle Scholar
  30. Madaan R, Bansal G, Kumar S, Sharma A (2011) Estimation of total phenols and flavonoids in extracts of Actaea spicata roots and antioxidant activity studies. Indian J Pharm Sci 73(6):666CrossRefGoogle Scholar
  31. Marston A (2007) Role of advances in chromatographic techniques in phytochemistry. Phytochemistry 68(22–24):2786–2798CrossRefGoogle Scholar
  32. Mattila P, Astola J, Kumpulainen J (2000) Determination of flavonoids in plant material by HPLC with diode-array and electro-array detections. J Agric Food Chem 48(12):5834–5841CrossRefGoogle Scholar
  33. Monagas M, Quintanilla-López JE, Gómez-Cordovés C, Bartolomé B, Lebrón-Aguilar R (2010) MALDI-TOF MS analysis of plant proanthocyanidins. J Pharm Biomed Anal 51(2):358–372CrossRefGoogle Scholar
  34. Oliveira RN, Mancini MC, Oliveira FCSD, Passos TM, Quilty B, Thiré RMDSM, McGuinness GB (2016) FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria (Rio de Janeiro) 21(3):767–779CrossRefGoogle Scholar
  35. Pereira CA, Yariwake JH, Lanças FM, Wauters JN, Tits M, Angenot L (2004) A HPTLC densitometric determination of flavonoids from Passiflora alata, P. edulis,P. incarnata and P. caerulea and comparison with HPLC method. Phytochem Anal 15(4):241–248CrossRefGoogle Scholar
  36. Sarker SD, Nahar L (2012) Hyphenated techniques and their applications in natural products analysis. In: Sarker S, Nahar L (eds) Natural products isolation. Methods in molecular biology (Methods and protocols), vol 864. Humana Press, New York, pp 301–340CrossRefGoogle Scholar
  37. Schmidt TJ, Merfort I, Willuhn G (1994) Gas chromatography-mass spectrometry of flavonoid aglycones II. Structure-retention relationships and a possibility of differentiation between isomeric 6-and 8-methoxyflavones. J Chromatogr A 669(1–2):236–240CrossRefGoogle Scholar
  38. Segura-Carretero A, Puertas-Mejía MA, Cortacero-Ramírez S, Beltrán R, Alonso-Villaverde C, Joven J, Dinelli G, Fernández-Gutiérrez A (2008) Selective extraction, separation, and identification of anthocyanins from Hibiscus sabdariffa L. using solid phase extraction-capillary electrophoresis-mass spectrometry (time-of-flight/ion trap). Electrophoresis 29(13):2852–2861CrossRefGoogle Scholar
  39. Sharma V, Chaudhary A, Arora S, Saxena AK, Ishar MPS (2013) β-Ionone derived chalcones as potent antiproliferative agents. Eur J Med Chem 69:310–315CrossRefGoogle Scholar
  40. Sharma V, Chaudhry A, Chashoo G, Arora R, Arora S, Ishar MPS (2014) β-Ionone derived apoptosis inducing endoperoxides; discovery of potent leads for anticancer agents. Eur J Med Chem 87:228–236CrossRefGoogle Scholar
  41. Sulaiman CT, Balachandran I (2016) LC/MS characterization of antioxidant flavonoids from Tragia involucrata L. Beni-Suef Univ J Basic Appl Sci 5(3):231–235CrossRefGoogle Scholar
  42. Sun Y, Fang N, Chen DD, Donkor KK (2008) Determination of potentially anti-carcinogenic flavonoids in wines by micellar electrokinetic chromatography. Food Chem 106(1):415–420CrossRefGoogle Scholar
  43. Wang X, Liang Y, Zhu L, Xie H, Li H, He J, Pan M, Zhang T, Ito Y (2010) Preparative isolation and purification of flavone C-glycosides from the leaves of Ficus microcarpa Lf by medium-pressure liquid chromatography, high-speed countercurrent chromatography, and preparative liquid chromatography. J Liq Chromatogr Relat Technol 33(4):462–480CrossRefGoogle Scholar
  44. Weisz GM, Kammerer DR, Carle R (2009) Identification and quantification of phenolic compounds from sunflower (Helianthus annuus L.) kernels and shells by HPLC-DAD/ESI-MSn. Food Chem 115(2):758–765CrossRefGoogle Scholar
  45. Wu J, Fang XA, Yuan Y, Dong Y, Liang Y, Xie Q, Ban J, Chen Y, Lv Z (2017) UPLC/Q-TOF-MS profiling of phenolics from Canarium pimela leaves and its vasorelaxant and antioxidant activities. Rev BrasFarmacogn 27(6):716–723Google Scholar
  46. Wulandari L, Retnaningtyas Y, Lukman H (2016) Analysis of flavonoid in medicinal plant extract using infrared spectroscopy and chemometrics. J Anal Methods Chem 2016:1–6CrossRefGoogle Scholar
  47. Zehl M, Braunberger C, Conrad J, Crnogorac M, Krasteva S, Vogler B, Beifuss U, Krenn L (2011) Identification and quantification of flavonoids and ellagic acid derivatives in therapeutically important Drosera species by LC–DAD, LC–NMR, NMR, and LC–MS. Anal BioanalChem 400(8):2565–2576CrossRefGoogle Scholar
  48. Zhang S, Dong S, Chi L, He P, Wang Q, Fang Y (2008) Simultaneous determination of flavonoids in chrysanthemum by capillary zone electrophoresis with running buffer modifiers. Talanta 76(4):780–784CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ashun Chaudhary
    • 1
  • Praveen Kumar
    • 2
  • Vivek Sheel Jaswal
    • 3
  • Abhinay Thakur
    • 4
  1. 1.Department of BiotechnologyM. M. Engineering College, Maharishi Markandeshwar (Deemed to be University)Mullana-AmbalaIndia
  2. 2.Faculty of BiologyTechnion-Israel Institute of TechnologyTechnion City-HaifaIsrael
  3. 3.Department of ChemistryM. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), MullanaMullana-AmbalaIndia
  4. 4.PG Department of ZoologyDAV CollegeJalandharIndia

Personalised recommendations