Insights into Contaminant Transport Modeling Through Compacted Bentonites

  • Tadikonda Venkata BharatEmail author
  • Partha Das
  • Ankti Srivastava
Part of the Developments in Geotechnical Engineering book series (DGE)


Diffusion transport studies through compacted bentonites are important in the areas of landfill construction, nuclear waste repositories, and soft ground remediation. Laboratory diffusion studies and proper theoretical models are required for the prediction of diffusion flow in the field applications. Several laboratory diffusion studies are evolved for the estimation of mass transport parameters. A significant ambiguity in the application of a specific diffusion technique and in the choice of the model often makes the accurate analysis of the diffusion transport difficult. In this work, various laboratory diffusion tests for the estimation of mass transport parameters are described. The theoretical analysis for each test and the significance of the estimated mass transport parameters from different diffusion formulations are discussed.


Contaminant transport Diffusion Compacted bentonites Landfills Nuclear waste repositories 


  1. 1.
    Bianchi, M., Liu, H.H., Birkholzer, J.T.: Radionuclide transport behavior a generic geological radioactive waste repository. Groundwater. National Grounwater Association (2015). Scholar
  2. 2.
    Pusch, R.: Use of bentonite for isolation of radioactive waste products. Clay Miner. 27, 353–361 (1992)CrossRefGoogle Scholar
  3. 3.
    Pusch, R.: The performance of clay barriers in repositories for high-level radioactive waste. Nucl. Eng. Technol. 38, 483–488 (2006)Google Scholar
  4. 4.
    Raj, K., Prasad, K.K., Bansal, N.K.: Radioactive waste management practices in India. Nucl. Eng. Des. (2006). Scholar
  5. 5.
    Weber, W.J., Ewing, R.C., Catlow, C.R.A., Rubia, T.D., Hobbs, L.W., Kinoshita, C., Matzke, H., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R., Zinkle, S.J.: Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 13(6) (1998)CrossRefGoogle Scholar
  6. 6.
    Wattal, P.K.: Indian programme on radioactive waste management. Sadhana 38(5) (2013). Scholar
  7. 7.
    Shackelford, C., Daniel, D.E., Liljestrand, H.M.: Diffusion of inorganic chemical species in compacted clay soil. J. Contam. Hydrol. 4(3), 241–273 (1989)CrossRefGoogle Scholar
  8. 8.
    Das, P., Bharat, T.V.: Effect of counter ions on the diffusion characteristics of a compacted bentonite. I. Geotech. J. (2017) Scholar
  9. 9.
    Benson, C., Zhai, H., Wang, X.: Estimating the hydraulic conductivity of compacted clay liners. J. Geotech. Eng. ASCE. 120, 366–387 (1994)CrossRefGoogle Scholar
  10. 10.
    Bharat, T.V.: Analytical model for 1-D contaminant diffusion through clay barriers. Environ. Geotech. 1(4), 210–221 (2013)CrossRefGoogle Scholar
  11. 11.
    Bohnhoff Gretchen, L., Shackelford Charles, D.: Hydraulic conductivity of chemically modified bentonites for containment barriers. In: Proceedings of the 7th International Congress on Environmental Geotechnics. iceg2014. [Barton, ACT]: Engineers Australia, pp. 440–447 (2014). ISBN 9781922107237Google Scholar
  12. 12.
    Chen, Y.G., Zhu, C.M., Ye, W.M., Cui, Y.J., Chen, B.: Effects of solution concentration and vertical stress on the swelling behavior of compacted GMZ01 bentonite. Appl. Clay Sci. 124, 11–20 (2016)CrossRefGoogle Scholar
  13. 13.
    Bouazza, A., Van Impe, W.F.: Liner design for waste disposal sites. Environ. Geol. 35(1), 41–54 (1998)CrossRefGoogle Scholar
  14. 14.
    Shackelford, C.D., Daniel, D.E.: Diffusion in saturated soil. I. Backgr. J. Geotech. Eng. 117(3), 467–484 (1991a)CrossRefGoogle Scholar
  15. 15.
    Shackelford, C.D., Daniel, D.E.: Diffusion in saturated soil. II. results for compacted clay. J. Geotech. Eng. 117(3), 485–506 (1991b)CrossRefGoogle Scholar
  16. 16.
    Robin, M.J.L., Gillham, R.W., Oscarson, D.W.: Diffusion of strontium and chloride in compacted clay-based materials. J. Soil Sci. Soc. Am. 51, 1102–1108 (1987)CrossRefGoogle Scholar
  17. 17.
    Oscarson., et al.: Sorption of caesium in compacted bentonite. Clays Clay Miner. 42(6), 731–736 (1994)Google Scholar
  18. 18.
    Cho, W.J., Oscarson, D.W., Gray, M.N., Cheung, S.C.H.: Influence of diffusant concentration on diffusion coefficients in clay. Radiochim. Acta. 60, 159–163 (1993)Google Scholar
  19. 19.
    Barone, F.S., Rowe, R.K., Quigley, R.M.: A laboratory estimation of diffusion and adsorption coefficients for several volatile organics in a natural clayey soil. J. Contam. Hydrol. 10, 225–250 (1992)CrossRefGoogle Scholar
  20. 20.
    Rowe, R.K., Booker, J.R.: 1-D pollutant migration in soils of finite depth. J. Geotech. Eng. 111(4), 479–499 (1985)CrossRefGoogle Scholar
  21. 21.
    Rowe, R.K., Caers, C.J., Barone, F.: Laboratory determination of diffusion and distribution coefficients of contaminants using undisturbed clayey soil. Can. Geotech. J. 25(1), 108–118 (1988)CrossRefGoogle Scholar
  22. 22.
    Bharat, T.V., Sivapullaiah, P.V., Allam, M.M.: Expert Syst. Appl. 39(12), 10812–10820 (2012)CrossRefGoogle Scholar
  23. 23.
    Bharat, T.V., Sivapullaiah, P.V., Allam, M.M.: Swarm intelligence-based solver for parameter estimation of laboratory through-diffusion transport of contaminants. Comput. Geotech. 36(6), 984–992 (2009)CrossRefGoogle Scholar
  24. 24.
    Mike, D.: Contaminant fluxes from hydraulic containment landfills-a review, environment agency science report SC0310/SR (2004)Google Scholar
  25. 25.
    Garcia-Gutieirrez, M., Missana, T., Mingarro, M., Samper, J., Dai, Z., Molinero, J.: Solute transport properties of compacted Ca-bentonite used in FEBEX project. J. Contam. Hydrol. 47, 127–137 (2001)CrossRefGoogle Scholar
  26. 26.
    Garcia-Gutierrez, M., Cormenzana, J.L., Missana, T., Mingarro, M.: Diffusion coefficients and accessible porosity for HTO and 36Cl in compacted FEBEX bentonite. 26, 65–73 (2004)Google Scholar
  27. 27.
    Shackelford, C.D., Moore, S.M.: Fickian diffusion for radionuclides for engineered containment barriers: diffusion coefficients, porosities and complicating issues. Eng. Geol. 152(2013), 133–147 (2013)CrossRefGoogle Scholar
  28. 28.
    Skagius, K., Neretnieks, I.: Porosities and diffusivities of some non-absorbing species in crystalline rocks. Water Resour. Res. 22(3), 389–398 (1986)CrossRefGoogle Scholar
  29. 29.
    Gillham, R.W., Robin, M.J.L., Dytynyshyn, D.J., Johnston, H.M.: Diffusion of nonreactive and reactive solutes through fine-grained barrier materials. Can. Geotech. J. 21(3), 541–550 (1984)CrossRefGoogle Scholar
  30. 30.
    Crank, J.: The Mathematics of Diffusion. Clarendon Press, London (1975)zbMATHGoogle Scholar
  31. 31.
    Olesen, T., Moldrup, P., Yamaguchi, T., Nissen, H.H., Rolston, D.E.: Modified half-cell method for measuring the solute diffusion coefficient in undisturbed, unsaturated soil. Soil Sci. 164(11), 835–840 (2000)CrossRefGoogle Scholar
  32. 32.
    Das, P., Manparvesh, S.R, Bharat, T.V.: Salt diffusion in compacted plastic clay: experimental and theoretical evaluation. In: 2016 Proceedings of the International Conference on Soil and Environment, ICSE, Bangalore (2016)Google Scholar
  33. 33.
    Barone, F.S., Rowe, R.K., Quigley, R.M.: Laboratory determination of chloride diffusion coefficients in an intact shale. Can. Geotech. J. 27(2), 177–184 (1990)CrossRefGoogle Scholar
  34. 34.
    Carslaw, H.S., Jaeger, C.: Conduction of Heat in Solids. Clarendon Press, Oxford (1959)zbMATHGoogle Scholar
  35. 35.
    Bharat, T.V.: Agents based algorithms for design parameter estimation in contaminant transport inverse problems. In: IEEE Swarm Intelligence Symposium, pp. 1–7 (2008)Google Scholar
  36. 36.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948 (1995)Google Scholar
  37. 37.
    Bharat, TV.: Metaheuristics for parameter estimation in contaminant transport modeling through soils. In: Proceedings of the 4th International Young Geotechnical Engineers (2009)Google Scholar
  38. 38.
    Clerc, M., Kennedy, J.: The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)CrossRefGoogle Scholar
  39. 39.
    Sun, J., Fang, W., Wu, X., Palade, V., Xu, W.: Quantum-behaved particle swarm optimization: analysis of individual particle behavior and parameter selection. Evol. Comput. 20(3) (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.IIT GuwahatiGuwahatiIndia

Personalised recommendations