Advertisement

Raised Intracranial Pressure

  • Manish Singh Sharma
Chapter

Abstract

Raised intracranial pressure (ICP) is one of the foremost critical-care emergencies that a neurological health specialist can be called upon to recognize and treat.

References

  1. 1.
    Sanchez GM, Burridge AL. Decision making in head injury management in the Edwin Smith papyrus. Neurosurg Focus. 2007;23:E5.PubMedCrossRefGoogle Scholar
  2. 2.
    Chang A, Lad EM, Lad SP. Hippocrates’ influence on the origins of neurosurgery. Neurosurg Focus. 2007;23:E9.PubMedCrossRefGoogle Scholar
  3. 3.
    Marketos SG, Skiadas PK. The modern hippocratic tradition. Some messages for contemporary medicine. Spine. 1999;24:1159–63.PubMedCrossRefGoogle Scholar
  4. 4.
    Monro A. Observations on the structure and functions of the nervous system. Edinburgh: Creech and Johnson; 1783.Google Scholar
  5. 5.
    Kellie G. An account of the appearances observed in the dissection of two of three individuals presumed to have perished in the storm of the 3rd, and whose bodies were discovered in the vicinity of Leith on the morning of the 4th November 1821; with some reflections on the pathology of the brain. Trans Med Chir Soc Edinb. 1824;1:84–169.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Quinke H. Lumbar puncture. In: Church A, editor. Modern clinical medicine, diseases of the nervous system. New York: Appleton; 1911. p. 223–57.Google Scholar
  7. 7.
    Guillaume J, Janny P. Manometricintracranienne continue interet de la method et premiers resultants. Rev Neurol (Paris). 1951;84:131–42.Google Scholar
  8. 8.
    Lundberg N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand. 1960;36:1–193.Google Scholar
  9. 9.
    Marmarou A, Beaumont A. Physiology of the cerebrospinal fluid and intracranial pressure. In: Winn HR, editor. Youman’s neurological surgery. 5th ed. Philadelphia: Elsevier Inc; 2004. p. 3257–88.Google Scholar
  10. 10.
    Rosomoff HL. Methods for simultaneous quantitative estimation of intracranial contents. J Appl Physiol. 1953;16:395–6.CrossRefGoogle Scholar
  11. 11.
    Tanna NK, Kohn MI, Horwich DN. Analysis of brain and cerebrospinal fluid volumes with MR imaging. Impact on PET data correction for atrophy. Part II. Aging and Alzheimer dementia. Radiology. 1991;178:123–30.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Rangel-Castilla L, Gopinath S, Robertson CS. Management of intracranial hypertension. Neurol Clin. 2008;26:521–41.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995;83:949–62.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care, AANS/CNS. Guidelines for the management of severe traumatic brain injury. VIII. Intracranial pressure thresholds. J Neurotrauma. 2007;24(Suppl 1):S55–8.Google Scholar
  15. 15.
    Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care, AANS/CNS. Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds. J Neurotrauma. 2007;24(Suppl 1):S59–64.Google Scholar
  16. 16.
    Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care, AANS/CNS. Guidelines for the management of severe traumatic brain injury. VII. Intracranial pressure monitoring technology. J Neurotrauma. 2007;24(Suppl 1):S45–54.Google Scholar
  17. 17.
    Leggate JRS, Piper IR, Robertson I. Clinical and laboratory evaluation of the Camino intracranial pressure monitoring system. In: Hoff JT, Betz AL, editors. Intracranial pressure VI. Berlin: Springer; 1989. p. 31–4.CrossRefGoogle Scholar
  18. 18.
    Barlow P, Mendelow AD, Lawerence AE, et al. Clinical evaluation of two methods of subdural pressure monitoring. J Neurosurg. 1985;63:578–82.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care, AANS/CNS. Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring. J Neurotrauma. 2007;24(Suppl 1):S37–44.Google Scholar
  20. 20.
    Jha AN, Sharma MSICU. Instrumentation. In: Ramamurthi B, Tandon PN, Ramamurthi R, Sridhar K, Vasudevan MC, editors. Textbook of operative neurosurgery. New Delhi: BI Publications; 2005. p. 133–45.Google Scholar
  21. 21.
    Lang EW, Chesnut RM. Intracranial pressure. Monitoring and management. Neurosurg Clin North Am. 1994;5:573–605.CrossRefGoogle Scholar
  22. 22.
    Mayhall CG, Archer NH, Lamb VA, et al. Ventriculostomy-related infections: a prospective epidemiologic study. N Engl J Med. 1984;310:553–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Zabramski JM, Whiting D, Darouiche RO, et al. Efficacy of antimicrobial-impregnated external ventricular drain catheters: a prospective, randomized, controlled trial. J Neurosurg. 2003;98:725–30.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Shafi S, Diaz-Arrastia R, Madden C, et al. Intracranial pressure monitoring in brain-injured patients is associated with worsening of survival. J Trauma. 2008;64:335–40.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kohli-Seth R, Oropello JM. The future of bedside monitoring. Crit Care Clin. 2000;16:557–78.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Arbit E, Diresta GR. Application of laser Doppler flowmetry in neurosurgery. Neurosurg Clin North Am. 1996;7:741–8.CrossRefGoogle Scholar
  27. 27.
    al-Rawi PG, Smielewski P, Kirkpatrick PJ. Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head. Stroke. 2001;32:2492–500.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    al-Rawi PG, Hutchinson PJ, Gupta AK, et al. Multi-parameter brain tissue monitoring-correlation between parameters and identification of cerebral perfusion pressure threshold. Zentralbl Neurochir. 2000;61:74–9.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Mayevsky A, Ornstein E, Meilin S, et al. The evaluation of brain cerebral blood flow and mitochondrial function by a fiber optic tissue spectroscope in neurosurgical patients. Acta Neurochir. 2002;81:367–71.Google Scholar
  30. 30.
    Feldman Z, Kanter MJ, Robertson CS, et al. Effect of head elevation on intracranial pressure, cerebral perfusion pressure, and cerebral blood flow in head-injured patients. J Neurosurg. 1992;76:207–11.PubMedCrossRefGoogle Scholar
  31. 31.
    Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons. Guidelines for the management of severe traumatic brain injury. Hyperventilation. J Neurotrauma. 2007;24:S87–90.CrossRefGoogle Scholar
  32. 32.
    Ghajar J. Traumatic brain injury. Lancet. 2000;356:923–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Oliveira-Abreu M, de Almeida ML. Management of mechanical ventilation in brain injury: hyperventilation and positive end-expiratory pressure. Rev Bras Ter Intensiva. 2009;21:72–9.PubMedCrossRefGoogle Scholar
  34. 34.
  35. 35.
    McCollam JS, O’Neil MG, Norcross ED, et al. Continuous infusions of lorazepam, midazolam, and propofol for sedation of the critically ill surgery trauma patient: a prospective, randomized comparison. Crit Care Med. 1999;27:2454–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Bauer C, Kreuer S, Ketter R, et al. [Remifentanil-propofol versus fentanyl-midazolam combinations for intracranial surgery: influence of anaesthesia technique and intensive sedation on ventilation times and duration of stay in the ICU] [Article in German]. Anaesthesist. 2007;56:128–32.PubMedCrossRefGoogle Scholar
  37. 37.
    Schierhout G, Roberts I. Anti-epileptic drugs for preventing seizures following acute traumatic brain injury. Cochrane Database Syst Rev. 2001;4:CD000173.Google Scholar
  38. 38.
    Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care, AANS/CNS. Guidelines for the management of severe traumatic brain injury. XIII. Antiseizure prophylaxis. J Neurotrauma. 2007;24(Suppl 1):S83–6.Google Scholar
  39. 39.
    Clasen RA, Pandolfi S, Laing I, et al. Experimental study of relation of fever to cerebral edema. J Neurosurg. 1974;41:576–81.PubMedCrossRefGoogle Scholar
  40. 40.
    Miller JD, Piper IR, Jones PA. Integrated multimodality monitoring in the neurosurgical intensive care unit. Neurosurg Clin North Am. 1994;5:661–70.CrossRefGoogle Scholar
  41. 41.
    Brain Trauma Foundation, American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS. Guidelines for the management of severe traumatic brain injury. III. Prophylactic hypothermia. J Neurotrauma. 2007;24(Suppl 1):S21–5.Google Scholar
  42. 42.
    Perel P, Roberts I. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2007;4:CD000567.Google Scholar
  43. 43.
    Ellender TJ, Skinner JC. The use of vasopressors and inotropes in the emergency medical treatment of shock. Emerg Med Clin North Am. 2008;26:759–86.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Brassard P, Seifert T, Secher NH. Is cerebral oxygenation negatively affected by infusion of norepinephrine in healthy subjects? Br J Anaesth. 2009;102:800–5.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Sambandan K, Vijayan A. Fluid management and perturbations in volume status. In: Cooper DH, Krainik AJ, Lubner SJ, et al., editors. The Washington manual of medical therapeutics. 32nd ed. Delhi: Walters Kluwer/Lippincott Williams & Wilkins; 2007. p. 54–101.Google Scholar
  46. 46.
    Prakash A, Matta BF. Hyperglycaemia and neurological injury. Curr Opin Anaesthesiol. 2008;21:565–9.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Quinn TJ, Lees KR. Hyperglycaemia in acute stroke—to treat or not to treat. Cerebrovasc Dis. 2009;27:148–55.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Hébert PC, Wells G, Blajchman MA, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion requirements in critical care investigators, Canadian critical care trials group. N Engl J Med. 1999;340:409–17.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Timmons SD. The life-saving properties of blood: mitigating cerebral insult after traumatic brain injury. Neurocrit Care. 2006;5:1–3.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Talving P, Benfield R, Hadjizacharia P, et al. Coagulopathy in severe traumatic brain injury: a prospective study. J Trauma. 2009;66:55–61.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Collen JF, Jackson JL, Shorr AF, et al. Prevention of venous thromboembolism in neurosurgery: a metaanalysis. Chest. 2008;134:237–49.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Chibbaro S, Tacconi L. Safety of deep venous thrombosis prophylaxis with low-molecular-weight heparin in brain surgery. Prospective study on 746 patients. Surg Neurol. 2008;70:117–21.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Sharma MS, Vohra A, Thomas P, et al. Effect of risk-stratified, protocol-based perioperative chemoprophylaxis on nosocomial infection rates in a series of 31 927 consecutive neurosurgical procedures (1994–2006). Neurosurgery. 2009;64:1123–30.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Pfister R, Bussmann L, Reinhart WH. Fatal intracerebral hemorrhage after reducing the valve pressure of a ventriculo-peritoneal shunt. Acta Neurochir (Wien). 2009;151:409–10.CrossRefGoogle Scholar
  55. 55.
    Ruiz-Sandoval JL, Campos A, Romero-Vargas S, et al. Multiple simultaneous intracerebral hemorrhages following accidental massive lumbar cerebrospinal fluid drainage: case report and literature review. Neurol India. 2006;54:421–4.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Muizelaar JP, Lutz HA, Becker DP. Effect of mannitol on ICP and CBF and correlation with pressure autoregulation in severely head-injured patients. J Neurosurg. 1984;61:700–6.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Cruz J, Minoja G, Okuchi K. Improving clinical outcomes from acute subdural hematomas with the emergency preoperative administration of high doses of mannitol: a randomized trial. Neurosurgery. 2001;49:864–71.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Knapp JM. Hyperosmolar therapy in the treatment of severe head injury in children: mannitol and hypertonic saline. AACN Clin Issues. 2005;16:199–211.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Cruz J, Minoja G, Okuchi K, et al. Successful use of the new high-dose mannitol treatment in patients with Glasgow coma scale scores of 3 and bilateral abnormal pupillary widening: a randomized trial. J Neurosurg. 2004;100:376–83.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Wakai A, Roberts I, Schierhout G. Mannitol for acute traumatic brain injury. Cochrane Database Syst Rev. 2007;1:CD001049.Google Scholar
  61. 61.
    Bereczki D, Fekete I, Prado GF, et al. Mannitol for acute stroke. Cochrane Database Syst Rev. 2007;3:CD001153.Google Scholar
  62. 62.
    Brain Trauma Foundation, American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS. Guidelines for the management of severe traumatic brain injury. II. Hyperosmolar therapy. J Neurotrauma. 2007;24(Suppl 1):S14–20.Google Scholar
  63. 63.
    Vialet R, Albanèse J, Thomachot L, et al. Isovolume hypertonic solutes (sodium chloride or mannitol) in the treatment of refractory posttraumatic intracranial hypertension: 2 mL/kg 7.5% saline is more effective than 2 mL/kg 20% mannitol. Crit Care Med. 2003;31:1683–7.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Battison C, Andrews PJ, Graham C, et al. Randomized, controlled trial on the effect of a 20% mannitol solution and a 7.5% saline/6% dextran solution on increased intracranial pressure after brain injury. Crit Care Med. 2005;33:196–202.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Doyle JA, Davis DP, Hoyt DB. The use of hypertonic saline in the treatment of traumatic brain injury. J Trauma. 2001;50:367–83.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Brain Trauma Foundation, American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS. Hyperosmolar therapy. J Neurotrauma. 2007;24:S14–20.CrossRefGoogle Scholar
  67. 67.
    The Brain Trauma Foundation. The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care. Anesthetics, analgesics, and sedatives. J Neurotrauma. 2007;24:S71–6.CrossRefGoogle Scholar
  68. 68.
    Bader MK, Arbour R, Palmer S. Refractory increased intracranial pressure in severe traumatic brain injury: barbiturate coma and bispectral index monitoring. AACN Clin Issues. 2005;16:526–41.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Pérez-Bárcena J, Llompart-Pou JA, Homar J, et al. Pentobarbital versus thiopental in the treatment of refractory intracranial hypertension in patients with traumatic brain injury: a randomized controlled trial. Crit Care. 2008;12:R112.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Schalén W, Sonesson B, Messeter K, et al. Clinical outcome and cognitive impairment in patients with severe head injuries treated with barbiturate coma. Acta Neurochir (Wien). 1992;117:153–9.CrossRefGoogle Scholar
  71. 71.
    Peterson K, Carson S, Carney N. Hypothermia treatment for traumatic brain injury: a systematic review and meta-analysis. J Neurotrauma. 2008;25:62–71.PubMedCrossRefGoogle Scholar
  72. 72.
    Clifton GL, Miller ER, Choi SC, et al. Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med. 2001;344:556–63.PubMedCrossRefGoogle Scholar
  73. 73.
    Adelson PD. Hypothermia following pediatric traumatic brain injury. J Neurotrauma. 2009;26:429–36.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Linares G, Mayer SA. Hypothermia for the treatment of ischemic and hemorrhagic stroke. Crit Care Med. 2009;37:S243–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Gudeman S, Miller J, Becker D. Failure of high-dose steroid therapy to influence intracranial pressure in patients with severe head injury. J Neurosurg. 1979;51:301–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Saul T, Ducker T, Saleman M, et al. Steroids in severe head injury: a prospective, randomized clinical trial. J Neurosurg. 1981;54:596–600.PubMedCrossRefGoogle Scholar
  77. 77.
    Edwards P, Arango M, Balica L, et al. Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury—outcomes at 6 months. Lancet. 2005;365:1957–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Feigin VL, Anderson N, Rinkel GJ, et al. Corticosteroids for aneurysmal subarachnoid haemorrhage and primary intracerebral haemorrhage. Cochrane Database Syst Rev. 2005;3:CD004583.Google Scholar
  79. 79.
    Tuettenberg J, Czabanka M, Horn P, et al. Clinical evaluation of the safety and efficacy of lumbar cerebrospinal fluid drainage for the treatment of refractory increased intracranial pressure. J Neurosurg. 2009;110:1200–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Williams RF, Magnotti LJ, Croce MA, et al. Impact of decompressive craniectomy on functional outcome after severe traumatic brain injury. J Trauma. 2009;66:1570–4.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Aarabi B, Hesdorffer DC, Ahn ES, et al. Outcome following decompressive craniectomy for malignant swelling due to severe head injury. J Neurosurg. 2006;104:469–79.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Stiefel MF, Heuer GG, Smith MJ, et al. Cerebral oxygenation following decompressive hemicraniectomy for the treatment of refractory intracranial hypertension. J Neurosurg. 2004;101:241–7.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Sahuquillo J, Arikan F. Decompressive craniectomy for the treatment of refractory high intracranial pressure in traumatic brain injury. Cochrane Database Syst Rev. 2006;1:CD003983.Google Scholar
  84. 84.
    Taylor A, Butt W, Rosenfeld J, et al. A randomized trial of very early decompressive craniectomy in children with traumatic brain injury and sustained intracranial hypertension. Childs Nerv Syst. 2001;17:154–62.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D'Urso P, Kossmann T, Ponsford J, Seppelt I, Reilly P, Wolfe R, DECRA Trial Investigators; Australian and New Zealand Intensive Care Society Clinical Trials Group. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364(16):1493–502.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Hofmeijer J, Kappelle LJ, Algra A, et al. HAMLET investigators. Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy After middle cerebral artery infarction with life-threatening edema trial [HAMLET]): a multicentre, open, randomised trial. Lancet Neurol. 2009;8:26–33.CrossRefGoogle Scholar
  87. 87.
    Vahedi K, Vicaut E, Mateo J, et al. DECIMAL investigators. Sequential-design, multicenter, randomized, controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (DECIMAL trial). Stroke. 2007;38:2506–17.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Jüttler E, Schwab S, Schmiedek P, et al. DESTINY study group. Decompressive surgery for the treatment of malignant infarction of the middle cerebral artery (DESTINY): a randomized, controlled trial. Stroke. 2007;38:2518–25.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Vahedi K, Hofmeijer J, Juettler E, et al. DECIMAL, DESTINY, and HAMLET investigators. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol. 2007;6:215–22.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Keller E, Pangalu A, Fandino J, et al. Decompressive craniectomy in severe cerebral venous and dural sinus thrombosis. Acta Neurochir. 2005;94:177–83.CrossRefGoogle Scholar
  91. 91.
    Güresir E, Schuss P, Vatter H, et al. Decompressive craniectomy in subarachnoid hemorrhage. Neurosurg Focus. 2009;26:E4.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Jüttler E, Schweickert S, Ringleb PA, et al. Long-term outcome after surgical treatment for space-occupying cerebellar infarction experience in 56 patients. Stroke. 2009;40:3060–6.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Pfefferkorn T, Eppinger U, Linn J, et al. Long-term outcome after suboccipital decompressive craniectomy for malignant cerebellar infarction. Stroke. 2009;40:3045–50.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Manley GT. Introduction: decompressive craniectomy for trauma and cerebrovascular disease. Neurosurg Focus. 2009;26:E1.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Schirmer CM, Ackil AA Jr, Malek AM. Decompressive craniectomy. Neurocrit Care. 2008;8:456–70.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Manish Singh Sharma
    • 1
  1. 1.Department of NeurosurgeryMayo Clinic School of Medicine, Mayo Clinic Health SystemMankatoUSA

Personalised recommendations