Neuroimaging in Neurological Emergencies

  • Ajay Garg
  • Leve Joseph


Imaging plays a key role in supporting clinical diagnosis in acute neurological emergencies and guiding clinical management of these patients. This chapter gives an overview of the imaging features in different acute neurological syndromes.


  1. 1.
    Hossmann KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994;36:557–65.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia—the ischemic penumbra. Stroke. 1981;12:723–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Lee TC, Bartlett ES, Fox AJ, et al. The hypodense artery sign. Am J Neuroradiol. 2005;26:2027–9.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Tomsick TA, Brott TG, Olinger CP, et al. Hyperdense middle cerebral artery: incidence and quantitative significance. Neuroradiology. 1989;31:312–5.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Leys D, Pruvo JP, Godefroy O, et al. Prevalence and significance of hyperdense middle cerebral artery in acute stroke. Stroke. 1992;23:317–24.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Barber PA, Demchuk AM, Zhang J, et al. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Aspects study group. Alberta Stroke programme early CT score. Lancet. 2000;355:1670–4.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Pexman JH, Barber PA, Hill MD, et al. Use of the Alberta Stroke program early CT score (ASPECTS) for assessing CT scans in patients with acute stroke. Am J Neuroradiol. 2001;22:1534–42.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Dzialowski I, Hill MD, Coutts SB, et al. Extent of early ischemic changes on computed tomography (CT) before thrombolysis: prognostic value of the Alberta stroke program early CT score in ECASS II. Stroke. 2006;37:973–8.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Bhatia R, Bal SS, Shobha N, et al. CT angiographic source images predict outcome and final infarct volume better than noncontrast CT in proximal vascular occlusions. Stroke. 2011;42:1575–80.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Barnwell SL, Clark WM, Nguyen TT, et al. Safety and efficacy of delayed intraarterial urokinase therapy with mechanical clot disruption for thromboembolic stroke. Am J Neuroradiol. 1994;15:1817–22.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Zeumer H, Freitag HJ, Zanella F, et al. Local intra-arterial fibrinolytic therapy in patients with stroke: urokinase versus recombinant tissue plasminogen activator (r-TPA). Neuroradiology. 1993;35:159–62.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Menon BK, d’Esterre CD, Qazi EM, et al. Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology. 2015;275:510–20.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Seker F, Potreck A, Möhlenbruch M, et al. Comparison of four different collateral scores in acute ischemic stroke by CT angiography. J NeuroIntervent Surg. 2016;8:1116–8.CrossRefGoogle Scholar
  14. 14.
    Ezzeddine MA, Lev MH, Mcdonald CT, et al. CT angiography with whole brain perfused blood volume imaging: added clinical value in the assessment of acute stroke. Stroke. 2002;33:959–66.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kloska SP, Nabavi DG, Gaus C, et al. Acute stroke assessment with CT: do we need multimodal evaluation? Radiology. 2004;233:79–86.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Wintermark M, Fischbein NJ, Smith WS, et al. Accuracy of dynamic perfusion CT with deconvolution in detecting acute hemispheric stroke. Am J Neuroradiol. 2005;26:104–12.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Schramm P, Schellinger PD, Klotz E, et al. Comparison of perfusion computed tomography and computed tomography angiography source images with perfusion-weighted imaging and diffusion-weighted imaging in patients with acute stroke of less than 6 hours' duration. Stroke. 2004;35:1652–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Wintermark M, Reichhart M, Thiran JP, et al. Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol. 2002;51:417–32.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Wintermark M, Meuli R, Browaeys P, et al. Comparison of CT perfusion and angiography and MRI in selecting stroke patients for acute treatment. Neurology. 2007;68:694–7.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Parsons MW, Pepper EM, Bateman GA, et al. Identification of the penumbra and infarct core on hyperacute noncontrast and perfusion CT. Neurology. 2007;68:730–6.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Tan JC, Dillon WP, Liu S, et al. Systematic comparison of perfusion-CT and CT-angiography in acute stroke patients. Ann Neurol. 2007;61:533–43.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Schaefer PW, Barak ER, Kamalian S, et al. Quantitative assessment of core/penumbra mismatch in acute stroke: CT and MR perfusion imaging are strongly correlated when sufficient brain volume is imaged. Stroke. 2008;39:2986–92.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, Johnston KC, Johnston SC, Khalessi AA, Kidwell CS, Meschia JF, Ovbiagele B, Yavagal DR, American Heart Association Stroke Council. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46:3020–35.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Bryan RN, Levy LM, Whitlow WD, et al. Diagnosis of acute cerebral infarction: comparison of CT and MR imaging. Am J Neuroradiol. 1991;12:611–20.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Mueller DP, Yuh WT, Fisher DJ, et al. Arterial enhancement in acute cerebral ischemia: clinical and angiographic correlation. Am J Neuroradiol. 1993;14:661–8.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Kidwell CS, Saver JL, Villablanca JP, et al. Magnetic resonance imaging detection of microbleeds before thrombolysis: an emerging application. Stroke. 2002;33:95–8.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Wong KS, Chan YL, Liu JY, et al. Asymptomatic microbleeds as a risk factor for aspirin-associated intracerebral hemorrhages. Neurology. 2003;60:511–3.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Chalela JA, Kang DW, Warach S. Multiple cerebral microbleeds: MRI marker of a diffuse hemorrhage-prone state. J Neuroimaging. 2004;14:54–7.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Kakuda W, Thijs VN, Lansberg MG, et al. Clinical importance of microbleeds in patients receiving IV thrombolysis. Neurology. 2005;65:1175–8.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Chien D, Kwong KK, Gress DR, et al. MR diffusion imaging of cerebral infarction in humans. Am J Neuroradiol. 1992;13:1097–102.. discussion 1095–1103PubMedPubMedCentralGoogle Scholar
  31. 31.
    Gonzalez RG, Schaefer PW, Buonanno FS, et al. Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology. 1999;210:155–62.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Lovblad KO, Laubach HJ, Baird AE, et al. Clinical experience with diffusion-weighted MR in patients with acute stroke. Am J Neuroradiol. 1998;19:1061–6.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Kidwell CS, Alger JR, Saver JL. Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke. 2003;34:2729–35.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Jansen O, Schellinger P, Fiebach J, et al. Early recanalisation in acute ischaemic stroke saves tissue at risk defined by MRI. Lancet. 1999;353:2036–7.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Sobesky J, Zaro Weber O, Lehnhardt FG, et al. Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke. 2005;36:980–5.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Schellinger PD, Thomalla G, Fiehler J, et al. MRI-based and CT-based thrombolytic therapy in acute stroke within and beyond established time windows: an analysis of 1210 patients. Stroke. 2007;38:2640–5.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Thomalla G, Schwark C, Sobesky J, et al. Outcome and symptomatic bleeding complications of intravenous thrombolysis within 6 hours in MRI-selected stroke patients: comparison of a german multicenter study with the pooled data of ATLANTIS, ECASS, and NINDS TPA trials. Stroke. 2006;37:852–8.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Ribo M, Molina CA, Rovira A, et al. Safety and efficacy of intravenous tissue plasminogen activator stroke treatment in the 3- to 6-hour window using multimodal transcranialdoppler/MRI selection protocol. Stroke. 2005;36:602–6.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Thomalla G, Kruetzelmann A, Siemonsen S, et al. Clinical and tissue response to intravenous thrombolysis in tandem internal carotid artery/middle cerebral artery occlusion: an MRI study. Stroke. 2008;39:1616–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Fiehler J, Albers GW, Boulanger JM, et al. Bleeding risk analysis in stroke imaging before thrombolysis (brasil): pooled analysis of t2*-weighted magnetic resonance imaging data from 570 patients. Stroke. 2007;38:2738–44.PubMedCrossRefGoogle Scholar
  41. 41.
    Singer OC, Humpich MC, Fiehler J, et al. Risk for symptomatic intracerebral hemorrhage after thrombolysis assessed by diffusion-weighted magnetic resonance imaging. Ann Neurol. 2008;63:52–60.PubMedCrossRefGoogle Scholar
  42. 42.
    Thomalla G, Cheng B, Ebinger M, Hao Q, Tourdias T, et al. DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4·5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol. 2011;10(11):978–86. Scholar
  43. 43.
    Azizyan A, Sanossian N, Mogensen MA, Liebeskind DS. Fluid-attenuated inversion recovery vascular hyperintensities: an important imaging marker for Cerebrovascular disease. Am J Neuroradiol. 2011;32:1771–5.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Lee KY, Latour LL, Luby M, et al. Distal hyperintense vessels on FLAIR: an MRI marker for collateral circulation in acute stroke? Neurology. 2009;72:1134–9.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kim BJ, Kang HG, Kim H-J, Ahn S-H, Kim NY, Warach S, Kang D-W. Magnetic resonance imaging in acute ischemic stroke treatment. J Stroke. 2014;16(3):131–45.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mullins ME, Schaefer PW, Sorensen AG, et al. CT and conventional and diffusion-weighted MR imaging in acute stroke: study in 691 patients at presentation to the emergency department. Radiology. 2002;224:353–60.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Barber PA, Darby DG, Desmond PM, et al. Identification of major ischemic change. Diffusion-weighted imaging versus computed tomography. Stroke. 1999;30:2059–65.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Wessels T, Rottger C, Jauss M, et al. Identification of embolic stroke patterns by diffusion-weighted MRI in clinically defined lacunar stroke syndromes. Stroke. 2005;36:757–61.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Saur D, Kucinski T, Grzyska U, et al. Sensitivity and interrater agreement of CT and diffusion-weighted MR imaging in hyperacute stroke. Am J Neuroradiol. 2003;24:878–85.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Brott T, Broderick J, Kothari R, et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke. 1997;28:1–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Kim J, Smith A, Hemphill JC III, et al. Contrast extravasation on CT predicts mortality in primary intracerebral hemorrhage. Am J Neuroradiol. 2008;29:520–5.PubMedCrossRefGoogle Scholar
  52. 52.
    King JT Jr. Epidemiology of aneurysmal subarachnoid hemorrhage. Neuroimaging Clin N Am. 1997;7:659–68.PubMedGoogle Scholar
  53. 53.
    Van der Wee N, Rinkel GJ, Hasan D, et al. Detection of subarachnoid haemorrhage on early CT: is lumbar puncture still needed after a negative scan? J Neurol Neurosurg Psychiatry. 1995;58:357–9.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Sames TA, Storrow AB, Finkelstein JA, et al. Sensitivity of new-generation computed tomography in subarachnoid hemorrhage. Acad Emerg Med. 1996;3:16–20.PubMedCrossRefGoogle Scholar
  55. 55.
    Edlow JA. Diagnosis of subarachnoid hemorrhage. Neurocrit Care. 2005;2:99–109.PubMedCrossRefGoogle Scholar
  56. 56.
    Van Gijn J, Van Dongen KJ. The time course of aneurysmal haemorrhage on computed tomograms. Neuroradiology. 1982;23:153–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Bederson JB, Connolly ES Jr, Batjer HH, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 2009;40:994–1025.PubMedCrossRefGoogle Scholar
  58. 58.
    Avrahami E, Katz R, Rabin A, et al. CT diagnosis of non-traumatic subarachnoid haemorrhage in patients with brain edema. Eur J Radiol. 1998;28:222–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Wiesmann M, Mayer TE, Yousry I, et al. Detection of hyperacute subarachnoid hemorrhage of the brain by using magnetic resonance imaging. J Neurosurg. 2002;96:684–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Yuan MK, Lai PH, Chen JY, et al. Detection of subarachnoid hemorrhage at acute and subacute/chronic stages: comparison of four magnetic resonance imaging pulse sequences and computed tomography. J Chin Med Assoc. 2005;68:131–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Noguchi K, Ogawa T, Seto H, et al. Subacute and chronic subarachnoid hemorrhage: diagnosis with fluid-attenuated inversion-recovery MR imaging. Radiology. 1997;203:257–62.PubMedCrossRefGoogle Scholar
  62. 62.
    Cioffi F, Pasqualin A, Cavazzani P, et al. Subarachnoid haemorrhage of unknown origin: clinical and tomographical aspects. Acta Neurochir (Wien). 1989;97:31–9.CrossRefGoogle Scholar
  63. 63.
    Huston J III, Nichols DA, Luetmer PH, et al. Blinded prospective evaluation of sensitivity of mr angiography to known intracranial aneurysms: importance of aneurysm size. AJNR Am J Neuroradiol. 1994;15:1607–14.PubMedGoogle Scholar
  64. 64.
    Anzalone N, Triulzi F, Scotti G. Acute subarachnoid haemorrhage: 3D time-of-flight MR angiography versus intra-arterial digital angiography. Neuroradiology. 1995;37:257–61.PubMedCrossRefGoogle Scholar
  65. 65.
    Atlas SW. Magnetic resonance imaging of intracranial aneurysms. Neuroimaging Clin N Am. 1997;7:709–20.PubMedGoogle Scholar
  66. 66.
    Korogi Y, Takahashi M, Katada K, et al. Intracranial aneurysms: detection with three-dimensional CT angiography with volume rendering—comparison with conventional angiographic and surgical findings. Radiology. 1999;211:497–506.PubMedCrossRefGoogle Scholar
  67. 67.
    Alberico RA, Patel M, Casey S, et al. Evaluation of the circle of Willis with three-dimensional CT angiography in patients with suspected intracranial aneurysms. Am J Neuroradiol. 1995;16:1571–8.. discussion 1579–1580PubMedGoogle Scholar
  68. 68.
    Vieco PT, Shuman WP, Alsofrom GF, et al. Detection of circle of Willis aneurysms in patients with acute subarachnoid hemorrhage: a comparison of CT angiography and digital subtraction angiography. Am J Roentgenol. 1995;165:425–30.CrossRefGoogle Scholar
  69. 69.
    Virapongse C, Cazenave C, Quisling R, et al. The empty delta sign: frequency and significance in 76 cases of dural sinus thrombosis. Radiology. 1987;162:779–85.PubMedCrossRefGoogle Scholar
  70. 70.
    Cure JK, van Tassel P. Congenital and acquired abnormalities of the dural venous sinuses. Semin Ultrasound CT MR. 1994;15:520–39.PubMedCrossRefGoogle Scholar
  71. 71.
    Shinohara Y, Yoshitoshi M, Yoshii F. Appearance and disappearance of empty delta sign in superior sagittal sinus thrombosis. Stroke. 1986;17:1282–4.PubMedCrossRefGoogle Scholar
  72. 72.
    Tsai FY, Wang AM, Matovich VB, et al. MR staging of acute dural sinus thrombosis: correlation with venous pressure measurements and implications for treatment and prognosis. Am J Neuroradiol. 1995;16:1021–9.PubMedGoogle Scholar
  73. 73.
    Dormont D, Anxionnat R, Evrard S, et al. MRI in cerebral venous thrombosis. J Neuroradiol. 1994;21:81–99.PubMedGoogle Scholar
  74. 74.
    Leach JL, Fortuna RB, Jones BV, et al. Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls. Radiographics. 2006;26(Suppl 1):S19–41; [discussion s42–s13]PubMedCrossRefGoogle Scholar
  75. 75.
    Farb RI, Scott JN, Willinsky RA, et al. Intracranial venous system: gadolinium-enhanced three-dimensional MR venography with auto-triggered elliptic centric-ordered sequence—initial experience. Radiology. 2003;226:203–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Ozsvath RR, Casey SO, Lustrin ES, et al. Cerebral venography: comparison of CT and MR projection venography. Am J Roentgenol. 1997;169:1699–707.CrossRefGoogle Scholar
  77. 77.
    Casey SO, Alberico RA, Patel M, et al. Cerebral CT venography. Radiology. 1996;198:163–70.PubMedCrossRefGoogle Scholar
  78. 78.
    Cure JK, van Tassel P, Smith MT. Normal and variant anatomy of the dural venous sinuses. Semin Ultrasound CT MR. 1994;15:499–519.PubMedCrossRefGoogle Scholar
  79. 79.
    Widjaja E, Griffiths PD. Intracranial MR venography in children: normal anatomy and variations. Am J Neuroradiol. 2004;25:1557–62.PubMedGoogle Scholar
  80. 80.
    Willinsky R, Goyal M, Terbrugge K, et al. Tortuous, engorged pial veins in intracranial duralarteriovenous fistulas: correlations with presentation, location, and MR findings in 122 patients. Am J Neuroradiol. 1999;20:1031–6.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Lee SK, Terbrugge KG. Cerebral venous thrombosis in adults: the role of imaging evaluation and management. Neuroimaging Clin N Am. 2003;13:139–52.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Keiper MD, Ng SE, Atlas SW, et al. Subcortical hemorrhage: marker for radiographically occult cerebral vein thrombosis on CT. J Comput Assist Tomogr. 1995;19:527–31.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Forbes KP, Pipe JG, Heiserman JE. Evidence for cytotoxic edema in the pathogenesis of cerebral venous infarction. Am J Neuroradiol. 2001;22:450–5.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Ducreux D, Oppenheim C, Vandamme X, et al. Diffusion-weighted imaging patterns of brain damage associated with cerebral venous thrombosis. Am J Neuroradiol. 2001;22:261–8.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Poon CS, Chang JK, Swarnkar A, et al. Radiologic diagnosis of cerebral venous thrombosis: pictorial review. Am J Roentgenol. 2007;189(6 Suppl):S64–75.CrossRefGoogle Scholar
  86. 86.
    Morgado C, Ruivo N. Imaging meningo-encephalic tuberculosis. Eur J Radiol. 2005;55:188–92.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Jinkins JR, Gupta R, Chang KH, et al. MR imaging of central nervous system tuberculosis. Radiol Clin North Am. 1995;33:771–86.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Whiteman ML. Neuroimaging of central nervous system tuberculosis in HIV-infected patients. Neuroimaging Clin N Am. 1997;7:199–214.PubMedPubMedCentralGoogle Scholar
  89. 89.
    De Castro CC, de Barros NG, Campos ZM, et al. CT scans of cranial tuberculosis. Radiol Clin North Am. 1995;33:753–69.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Gupta RK, Prakash M, Mishra AM, et al. Role of diffusion weighted imaging in differentiation of intracranial tuberculoma and tuberculous abscess from cysticercus granulomas—a report of more than 100 lesions. Eur J Radiol. 2005;55:384–92.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Gaviani P, Schwartz RB, Hedley-Whyte ET, et al. Diffusion-weighted imaging of fungal cerebral infection. Am J Neuroradiol. 2005;26:1115–21.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Gupta RK, Vatsal DK, Husain N, et al. Differentiation of tuberculous from pyogenic brain abscesses with in vivo proton MR spectroscopy and magnetization transfer MR imaging. Am J Neuroradiol. 2001;22:1503–9.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Garg M, Gupta RK, Husain M, et al. Brain abscesses: etiologic categorization with in vivo proton MR spectroscopy. Radiology. 2004;230:519–27.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Luthra G, Parihar A, Nath K, et al. Comparative evaluation of fungal, tubercular, and pyogenic brain abscesses with conventional and diffusion MR imaging and proton MR spectroscopy. Am J Neuroradiol. 2007;28:1332–8.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Wasay M, Mekan SF, Khelaeni B, et al. Extra temporal involvement in herpes simplex encephalitis. Eur J Neurol. 2005;12:475–9.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Demaerel P, Wilms G, Robberecht W, et al. MRI of herpes simplex encephalitis. Neuroradiology. 1992;34:490–3.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Gumus H, Kumandas S, Per H, et al. Unusual presentation of herpes simplex virus encephalitis: bilateral thalamic involvement and normal imaging of early stage of the disease. Am J Emerg Med. 2007;25:87–9.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Sener RN. Diffusion MRI in Rasmussen’s encephalitis, herpes simplex encephalitis, and bacterial meningoencephalitis. Comput Med Imaging Graph. 2002;26:327–32.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Sener RN. Herpes simplex encephalitis: diffusion MR imaging findings. Comput Med Imaging Graph. 2001;25:391–7.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Tsuchiya K, Katase S, Yoshino A, et al. Diffusion-weighted MR imaging of encephalitis. Am J Roentgenol. 1999;173:1097–9.CrossRefGoogle Scholar
  101. 101.
    Zimmerman RD, Russell EJ, Leeds NE, et al. CT in the early diagnosis of herpes simplex encephalitis. Am J Roentgenol. 1980;134:61–6.CrossRefGoogle Scholar
  102. 102.
    Kalita J, Misra UK. Comparison of CT scan and MRI findings in the diagnosis of Japanese encephalitis. J Neurol Sci. 2000;174:3–8.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Handique SK, Das RR, Barman K, et al. Temporal lobe involvement in Japanese encephalitis: problems in differential diagnosis. Am J Neuroradiol. 2006;27:1027–31.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Prakash M, Kumar S, Gupta RK. Diffusion-weighted MR imaging in Japanese encephalitis. J Comput Assist Tomogr. 2004;28:756–61.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Ali M, Safriel Y, Sohi J, et al. West Nile virus infection: MR imaging findings in the nervous system. Am J Neuroradiol. 2005;26:289–97.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Shen WC, Chiu HH, Chow KC, et al. MR imaging findings of enteroviral encephaloymelitis: an outbreak in Taiwan. AJNR Am J Neuroradiol. 1999;20:1889–95.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Dale RC, De Sousa C, Wk C, et al. Acute disseminated encephalomyelitis, multiphasic disseminated encephalomyelitis and multiple sclerosis in children. Brain. 2000;123:2407–22.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Campi A, Filippi M, Comi G, et al. Acute transverse myelopathy: spinal and cranial MR study with clinical follow-up. Am J Neuroradiol. 1995;16:115–23.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Balasubramanya KS, Kovoor JM, Jayakumar PN, et al. Diffusion-weighted imaging and proton MR spectroscopy in the characterization of acute disseminated encephalomyelitis. Neuroradiology. 2007;49:177–83.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Zuccoli G, Gallucci M, Capellades J, et al. Wernicke encephalopathy: MR findings at clinical presentation in twenty-six alcoholic and nonalcoholic patients. Am J Neuroradiol. 2007;28:1328–31.PubMedCrossRefGoogle Scholar
  111. 111.
    Gallucci M, Bozzao A, Splendiani A, et al. Wernicke encephalopathy: MR findings in five patients. Am J Neuroradiol. 1990;11:887–92.PubMedGoogle Scholar
  112. 112.
    Zuccoli G, Pipitone N. Neuroimaging findings in acute Wernicke’s encephalopathy: review of the literature. Am J Roentgenol. 2009;192:501–8.CrossRefGoogle Scholar
  113. 113.
    Bae SJ, Lee HK, Lee JH, et al. Wernicke’s encephalopathy: a typical manifestation at MR imaging. AJNR Am J Neuroradiol. 2001;22:1480–2.PubMedGoogle Scholar
  114. 114.
    Antunez E, Estruch R, Cardenal C, et al. Usefulness of CT and MR imaging in the diagnosis of acute Wernicke's encephalopathy. Am J Roentgenol. 1998;171:1131–7.CrossRefGoogle Scholar
  115. 115.
    Bartynski WS, Boardman JF. Catheter angiography, MR angiography, and MR perfusion in posterior reversible encephalopathy syndrome. Am J Neuroradiol. 2008;29:447–55.PubMedCrossRefGoogle Scholar
  116. 116.
    Bartynski WS, Boardman JF, Zeigler ZR, et al. Posterior reversible encephalopathy syndrome in infection, sepsis, and shock. Am J Neuroradiol. 2006;27:2179–90.PubMedGoogle Scholar
  117. 117.
    Schwartz RB, Bravo SM, Klufas RA, et al. Cyclosporine neurotoxicity and its relationship to hypertensive encephalopathy: CT and MR findings in 16 cases. Am J Roentgenol. 1995;165:627–31.CrossRefGoogle Scholar
  118. 118.
    Poon WL, Mok CC. Reversible posterior leucoencephalopathy in scleroderma. Ann Rheum Dis. 2005;64:1803–4.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Kur JK, Esdaile JM. Posterior reversible encephalopathy syndrome—an underrecognized manifestation of systemic lupus erythematosus. J Rheumatol. 2006;33:2178–83.PubMedGoogle Scholar
  120. 120.
    Bartynski WS, Zeigler ZR, Shadduck RK, et al. Pretransplantation conditioning influence on the occurrence of cyclosporine or FK-506 neurotoxicity in allogeneic bone marrow transplantation. Am J Neuroradiol. 2004;25:261–9.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Hefzy HM, Bartynski WS, Boardman JF, et al. Hemorrhage in posterior reversible encephalopathy syndrome: imaging and clinical features. Am J Neuroradiol. 2009;30:1371–9.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Pujol A, Pujol J, Graus F, et al. Hyperintense globus pallidus on T1-weighted MRI in cirrhotic patients is associated with severity of liver failure. Neurology. 1993;43:65–9.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Morgan MY. Noninvasive neuroinvestigation in liver disease. Semin Liver Dis. 1996;16:293–314.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Fujioka M, Okuchi K, Hiramatsu KI, et al. Specific changes in human brain after hypoglycemic injury. Stroke. 1997;28:584–7.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Lo L, Tan AC, Umapathi T, et al. Diffusion-weighted MR imaging in early diagnosis and prognosis of hypoglycemia. Am J Neuroradiol. 2006;27:1222–4.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Yuh WT, Simonson TM, D’alessandro MP, et al. Temporal changes of MR findings in central pontinemyelinolysis. Am J Neuroradiol. 1995;16(4 Suppl):975–7.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Miller GM, Baker HL Jr, Okazaki H, et al. Central pontine myelinolysis and its imitators: MR findings. Radiology. 1988;168:795–802.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Lampl C, Yazdi K. Central pontine myelinolysis. Eur Neurol. 2002;47:3–10.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Ruzek KA, Campeau NG, Gm M. Early diagnosis of central pontine myelinolysis with diffusion-weighted imaging. Am J Neuroradiol. 2004;25:210–3.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Kinoshita T, Sugihara S, Matsusue E, et al. Pallidoreticular damage in acute carbon monoxide poisoning: diffusion-weighted MR imaging findings. Am J Neuroradiol. 2005;26:1845–8.PubMedPubMedCentralGoogle Scholar
  131. 131.
    O'donnell P, Buxton PJ, Pitkin A, et al. The magnetic resonance imaging appearances of the brain in acute carbon monoxide poisoning. Clin Radiol. 2000;55:273–80.PubMedCrossRefGoogle Scholar
  132. 132.
    Rubinstein D, Escott E, Kelly JP. Methanol intoxication with putaminal and white matter necrosis: MR and CT findings. Am J Neuroradiol. 1995;16:1492–4.PubMedGoogle Scholar
  133. 133.
    Blanco M, Casado R, Vazquez F, et al. CT and MR imaging findings in methanol intoxication. Am J Neuroradiol. 2006;27:452–4.PubMedGoogle Scholar
  134. 134.
    Sefidbakht S, Rasekhi AR, Kamali K, et al. Methanol poisoning: acute MR and CT findings in nine patients. Neuroradiology. 2007;49:427–35.PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Ajay Garg
    • 1
  • Leve Joseph
    • 2
  1. 1.Department of NeuroradiologyAll India Institute of Medical SciencesNew DelhiIndia
  2. 2.Department of Neuroimaging and Interventional NeuroradiologyAll Institute of Medical SciencesNew DelhiIndia

Personalised recommendations