Synthesis and Application of Hydroxamic Acid: A Key Secondary Metabolite of Piriformospora indica

  • Bansh Narayan Singh
  • Akash Hidangmayum
  • Ankita Singh
  • Shailendra Singh Shera
  • Padmanabh Dwivedi


Owing to its outstanding contribution in promoting plant growth and mitigating environmental stresses through activating different defense mechanisms, a root-colonizing endophytic fungus Piriformospora indica has received great attention from researchers over the past three decades. Piriformospora indica is a cultivable fungus which demonstrates its adaptability of colonizing a broad spectrum of plant species through secretion/alteration of secondary metabolites and host hormone signaling pathways during the course of root association. Association of Piriformospora indica with plant roots leads to an improved plant performance like proliferation by indole-3-acetic acid production and nutrient acquisition subsequently leading to improved crop growth and production. Furthermore, its metabolites reprogram the root association which stimulates both local and systemic resistance against plant diseases through signal transduction. In this review, we focus on the importance of secondary metabolites of Piriformospora indica, limited not only in plants but also in animal system.


Nutrient acquisition Piriformospora indica Root colonization Secondary metabolites 



6-Methoxy podophyllotoxin


Hydroxamic acids 2,4-dihydroxy-1,4-benzoxazin-3-one




Histone deacetylase


Methyl jasmonate


9-cis-epoxycarotenoid dioxygenase




Suberoylanilide hydroxamic acid


  1. Adya AK, Gautam A, Lixing Z, Varma A (2012) Characterisation of Piriformospora indica culture filtrate: protocol. In: Oelmueller R, Tripathy S, Kost G, Varma A (eds) Sebacinales. Piriformospora indica: Sebacinales and their biotechnological applications. Soil Biology, vol 33. Springer-Verlag, Berlin, pp 345–375. CrossRefGoogle Scholar
  2. Agandona VH, Corcuera LI (1985) Distribution of hydroxamic acids in Zea mays tissue. Phytochemistry 24:177CrossRefGoogle Scholar
  3. Agandona VH, Nlemeyer HM, Corcuera LI (1981) Effect of content and distribution of hydroxamic acids in wheat on infestation by the aphids Schizaphis graminum. Phytochemistry 20:673. CrossRefGoogle Scholar
  4. Agandona VH, Zuniga GF, Corcuera LI (1987) Distribution of gramine and hydroxamic acids in barley and wheat leaves. Phytochemistry 26:1917–1918CrossRefGoogle Scholar
  5. Ansari MW, Bains G, Shukla A, Pant RC, Tuteja N (2013) Low temperature stress ethylene and not Fusarium might be responsible for mango malformation. Plant Physiol Biochem 69:34–38. CrossRefPubMedGoogle Scholar
  6. Argandona VH, Luza JG, Nlemeyer HM, Corcuera LJ (1980) Role of hydroxamic acids in the resistance of cereals to aphids. Phytochemistry 19:1665–1668. CrossRefGoogle Scholar
  7. Awan SZ, Chandler JO, Harrison PJ, Sergeant MJ, Bugg TDH, Thompson AJ (2017) Promotion of germination using hydroxamic acid inhibitors of 9-cis-epoxycarotenoid dioxygenase. Front Plant Sci 8:357. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barazani O, Baldwin IT (2013) A mixed bag: the plant growth-promoting Sebacina vermifera impairs defense mechanisms against herbivores. In: Varma A, Kost G, Oelmuller R (eds) Piriformospora indica, sebacinales and their biotechnological applications. Springer, Berlin/Heidelberg, pp 251–262Google Scholar
  9. Bhatia RK, Bhatia SK, Mehta PK, Bhalla TC (2012) Bench scale production of benzohydroxamic acid using acyl transfer activity of amidase from Alcaligenes sp. MTCC 10674. J Ind Microbiol Biotechnol 40:21–27. CrossRefPubMedGoogle Scholar
  10. Bhatia RK, Bhatia SK, Mehta PK, Bhalla TC (2013) Production and characterization of acyl transfer activity of amidase from Alcaligenes sp. MTCC 10674 for synthesis of hydroxamic acids. J Microb Biochem Technol 5:001–005.
  11. Bhatia RK, Bhatia SK, Mehta PK, Bhalla TC (2014) Biotransformation of nicotinamide to nicotinyl hydroxamic acid at bench scale by amidase acyl transfer activity of Pseudomonas putida BR-1. J Mol Catal B Enzym 108:89–95. CrossRefGoogle Scholar
  12. Bosiack AP, Giuliano EA, Gupta R, Mohan RR (2011) Efficacy and safety of suberoylanilide hydroxamic acid (Vorinostat) in the treatment of canine corneal fibrosis. Vet Ophthalmol 15:307–314. CrossRefPubMedGoogle Scholar
  13. Camehl I, Sherameti I, Seebald E, Michal J, Oelmüller R (2013) Role of defense compounds in the beneficial interaction between Arabidopsis thaliana and Piriformospora indica. In: Varma A, Kost G, Oelmuller R (eds) Sebacinales-forms, functions and biotechnological applications soil biology series no 33. Springer, Berlin, pp 239–250Google Scholar
  14. Chen CH, Chein MY, Hou WC, Lin YH (2011) Method for scavenging free radicals and inhibiting tyrosinsase and melanin. US Patent US (2011)/0039898/A1Google Scholar
  15. Copaj SV, Villarroel E, Bravo HR, Pizarro L, Argandon VH (2006) Hydroxamic acids in Secale cereale L. and the relationship with their antifeedant and allelopathic properties. Z Naturforsch C 61:670–676. CrossRefGoogle Scholar
  16. Copaja SV, Nlemeyer HM, Wratten SD (1991) Hydroxamic acid levels in Chilean and British wheat seedlings. Ann Appl Biol 118:223–227. CrossRefGoogle Scholar
  17. Corcuera LJ, Woodward MD, Helgeson JP, Kelman A, Upper CD (1978) 2, 4-Dihydroxy-7-methoxy-2H-1, 4-benzoxazin-3 (4H)-one, an inhibitor from Zea mays with differential activity against soft rotting Erwinia species. Plant Physiol 61(5):791–795CrossRefGoogle Scholar
  18. Cordoba E, Salmi M, León P (2009) Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J Exp Bot 60(10):2933–2943. CrossRefPubMedGoogle Scholar
  19. Das A, Kamal S, Shakil NA, Sherameti I, Oelmüller R, Dua M, Tuteja N, Johri AK, Varma A (2012) The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. Plant Signal Behav 7(1):103–112. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Epstein WW, Rowsemitt CN, Berger PJ, Negus NC (1986) Dynamics of 6-methoxybenzoxazolinone in winter wheat. J Chem Ecol 12(10):2011–2020CrossRefGoogle Scholar
  21. Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96(6):1455–1464. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Giannini G, Battistuzzi G, Vignola D (2015) Hydroxamic acid based histone deacetylase inhibitors with confirmed activity against the malaria parasite. Bioorg Med Chem Lett 25:459–461. CrossRefPubMedGoogle Scholar
  23. Gosal SK, Sharma M, Gosal SS, Chhibba IM, Bhatnagar K, Varma A (2011) Biohardening with Piriformospora indica improves survival rate, growth, iron uptake and cane yield of micropropagated sugarcane. Int Sugar J 113:382–388Google Scholar
  24. Guthrie WD, Tseng CT, Russell WA, Coats JR, Robbins JC, Tollefson JJ (1986) DIMBOA content at seven stages of plant development in a maize synthetic cultivar. J Kansas Entomol Soc 59:356–360Google Scholar
  25. Haron MJ, Jahangirian H, Yusof NA, Kassim A, Rafiee-Moghaddam R, Peyda M, Abdollahi Y, Hassan KF, Kandil SA, Abdel-Aziz HM, Siyam T (2011) Preparation of poly (hydroxamic acid) for separation of Zr/Y, Sr system. Chromatogr Res Int 12:1–6. CrossRefGoogle Scholar
  26. Hassan KF, Kandil SA, Abdel-Aziz HM, Siyam T (2011) Preparation of poly (hydroxamic acid) for separation of Zr/Y, Sr system. Chromatogr Res Int 12:1–6. CrossRefGoogle Scholar
  27. Haron MJ, Jahangirian H, Silong S, Yusof NA, Kassim A, Rafiee-Moghaddam R, Mahdavi B, Peyda M, Abdollahi Y, Amin J (2012) Benzyl and methyl fatty hydroxamic acids based on palm kernel oil as chelating agent for liquid-liquid iron (III) extraction. Int J Mol Sci 13(2):2148–2159CrossRefGoogle Scholar
  28. Hilbert M et al (2012) Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. New Phytol 196:520–534. CrossRefPubMedGoogle Scholar
  29. Hua MD, Kumar RS, Shyur LF, Cheng YB, Tian Z, Oelmüller R, Yeh KW (2017) Metabolomic compounds identified in Piriformospora indica-colonized Chinese cabbage roots delineate symbiotic functions of the interaction. Sci Rep 7(1):9291. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Humphrey TV, Richman AS, Menassa R, Brandle JE (2006) Spatial organisation of four enzymes from Stevia rebaudiana that are involved in steviol glycoside synthesis. Plant Mol Biol 61(1–2):47–62. CrossRefPubMedGoogle Scholar
  31. Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E, Lipka V, Kogel KH, Schäfer P (2011) Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiol 156(2):726–740. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jahangirian H, Haron MJ, Silong S, Yusof NA (2011a) Enzymatic synthesis of phenyl fatty hydroxamic acid from canola and palm oil. J Oleo Sci 60:281–286. CrossRefPubMedGoogle Scholar
  33. Jahangirian H, Haron MJ, Silong S, Yusof NA (2011b) Enzymatic synthesis of phenyl fatty for separation of Zr/Y, Sr system. Chromatogr Res Int 12:1–6. CrossRefGoogle Scholar
  34. Janzen DH, Juster HB, Bell EA (1977) Toxicity of secondary compounds to the seed-eating larvae of the bruchid beetle Callosobruchus maculatus. Phytochemistry 16(2):223–227CrossRefGoogle Scholar
  35. Jayasekera MMK, Kendall A, Shammas R, Dermyer M, Tomala M, Shapiro MA, Holler TP (2000) Novel non peptidic inhibitors of peptide deformylase. Arch Biochem Biophys 381:313–326. CrossRefPubMedGoogle Scholar
  36. Khatabi B, Molitor A, Lindermayr C, Pfiffi S, Durner J, Von Wettstein D, Kogel KH, Schäfer P (2012) Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica. PLoS One 7(4):e35502CrossRefGoogle Scholar
  37. Kilam D, Saifi M, Abdin MZ, Agnihotri A, Varma A (2017) Endophytic root fungus Piriformospora indica affects transcription of steviol biosynthesis genes and enhances production of steviol glycosides in Stevia rebaudiana. Physiol Mol Plant Pathol 97:40–48. CrossRefGoogle Scholar
  38. Klun JA, Robinson JF (1969) Concentration of two 1,4-benzoxazinones in dent corn at various stages of development of the plant and its relation to resistance of the host plant to the European corn borer. J Econ Entomol 62:214–220CrossRefGoogle Scholar
  39. Klun JA, Tipton CL, Brindley TA (1967) 2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) an active agent in the resistance of maize to the European corn borer. J Econ Entomol 60(6):1529–1533. CrossRefGoogle Scholar
  40. Kumar H, Kaul K, Bajpai-Gupta S, Kaul VK, Kumar S (2012) A comprehensive analysis of fifteen genes of steviol glycosides biosynthesis pathway in Stevia rebaudiana (Bertoni). Gene 492(1):276–284. CrossRefPubMedGoogle Scholar
  41. Kumar M, Yadav V, Singh A, Tuteja N, Johri AK (2011) Piriformospora indica enhances plant growth by transferring phosphate. Plant Signal Behav 6:723–725. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lacy GH, Hirano SS, Victoria JI, Kelman A, Upper CD (1979) Inhibition of soft-rotting Erwinia spp. strains by 2, 4-dihydroxy-7-methoxy-2H-1, 4-benzoxazin-3 (4H)-one in relation to their pathogenicity on Zea mays. Phytopathology 69(7):757–763CrossRefGoogle Scholar
  43. Long BJ, Dunn GM, Bowman JS, Routley DG (1977) Relationship of Hydroxamic acid content in corn and resistance to the corn leaf aphid 1. Crop Sci 17(1):55–58CrossRefGoogle Scholar
  44. Manuwoto S, Scriber JM (1985a) Differential effects of nitrogen fertilization of three corn genotypes on biomass and nitrogen utilization by the southern armyworm. Spodoptera eridania. Agric Ecosyst Environ 14:25–40CrossRefGoogle Scholar
  45. Manuwoto S, Scriber JM (1985b) Consumption and utilization of experimentally altered corn by Southern armyworm: iron, nitrogen, and cyclic hydroxamates. J Chem Ecol 11(11):1469–1483CrossRefGoogle Scholar
  46. McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7(7):1015. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Modi AR, Raj S, Kanani P, Patel A, Narayanan S (2014) Analysis of differentially expressed genes involved in stevioside biosynthesis in cultures of Stevia rebaudiana Bertoni treated with steviol as an immediate precursor. J Plant Growth Regul 33(3):481–488CrossRefGoogle Scholar
  48. Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM (2001) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 61:8492–8497PubMedGoogle Scholar
  49. Muri EMF, Nieto MJ, Sindelar RD, Williamson JS (2002) Hydroxamic acids as pharmacological agents. Curr Med Chem 662:1631–1653. CrossRefGoogle Scholar
  50. Nautiyal CS, Chauhan PS, Das Gupta SM, Seem K, Varma A, Staddon W (2010) Tripartite interactions among Paenibacillus lentimorbus NRRL B-30488, Piriformospora indica DSM11827 and Cicer arietinum L. World J Microbiol Biotechnol 26:1393–1399. CrossRefGoogle Scholar
  51. Ngwene B, Andrade-Linares DR, Franken P (2013) Phosphate solubilization and plant growth promotion of the fungal root endophyte Piriformospora indica. In: Schneider C, Leifert C, Feldmann F (eds) Endophytes for plant protection: the state of the art. Deutsche Phytome dizinische Gesellschaft, Braunschweig, pp 192–193Google Scholar
  52. Pal PK, Kumar R, Guleria V, Mahajan M, Prasad R, Pathania V, Gill BS, Singh D, Chand G, Singh B, Singh RD (2015) Crop-ecology and nutritional variability influence growth and secondary metabolites of Stevia rebaudiana Bertoni. BMC Plant Biol 15(1):67. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Pandey D, Singh R, Chand D (2011) An improved bioprocess for the synthesis of acetohydroxamic acid using DTT (dithiothreitol) treated resting cells Bacillus sp. APB-6. Bioresour Technol 102:6579–6586. CrossRefPubMedGoogle Scholar
  54. Patanun O, Ueda M, Itouga M, Kato Y, Utsumi Y, Matsui A, Tanaka M, Utsumi C, Sakakibara H, Yoshida M, Narangajavana J, Seki M (2017) The histone deacetylase inhibitor suberoyl-anilide hydroxamic acid alleviates salinity stress in cassava. Front Plant Sci 7:2039. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pepeljnjak ST, Zorc BR, Butula I (2005) Antimicrobial activity of some hydroxamic acids. Acta Pharma 55(4):401–408Google Scholar
  56. Peškan-Berghöfer T, Shahollari B, Giong PH, Hehl S, Markert C, Blanke V, Kost G, Varma A, Oelmüller R (2004) Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant–microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol Plant 122(4):465–477. CrossRefGoogle Scholar
  57. Rajasekaran T, Giridhar P, Ravishankar GA (2007) Production of steviosides in ex vitro and in vitro grown Stevia rebaudiana Bertoni. J Sci Food Agric 87(3):420–424. CrossRefGoogle Scholar
  58. Schäfer P, Khatabi B, Kogel KH (2007) Root cell death and systemic effects of Piriformospora indica: a study on mutualism. FEMS Microbiol Lett 275(1):1–7. CrossRefPubMedGoogle Scholar
  59. Sharma M, Sharma NN, Bhalla TC (2012) Biotransformation of acetamide to aceto-hydroxamic acid at bench scale using acyl transferase activity of amidase of Geobacillus pallidus BTP-5x MTCC 9225. Indian J Microbiol 52:76–82. CrossRefPubMedGoogle Scholar
  60. Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmuller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeo domain transcription factor that binds to a conserved motif in their promoters. J Biol Chem 280:26241–26247. CrossRefPubMedGoogle Scholar
  61. Swanson SM, Mahady GB, Beecher CW (1992) Stevioside biosynthesis by callus, root, shoot and rooted-shoot cultures in vitro. Plant Cell Tissue Organ Cult 28(2):151–157CrossRefGoogle Scholar
  62. Tashackori H, Sharifi M, Chashmi NA, Safaie N, Behmanesh M (2016) Induced-differential changes on lignan and phenolic acid compounds in Linum album hairy roots by fungal extract of Piriformospora indica. Plant Cell Tissue Organ Cult 127(1):187–194. CrossRefGoogle Scholar
  63. Thackray DJ, Wratten SD, Edwards PJ, Niemeyer HM (1990) Hydroxamic acids – Potential resistance factors in wheat against the cereal aphids Sitohion acenae and Rhopalosiphum padi. Proceedings of brighton pest control conference, pests and diseases, pp 215–220Google Scholar
  64. Thompson L, Slife FW, Butler HS (1970) Environmental influence on the tolerance of corn to atrazine. Weed Sci 18(4):509–514Google Scholar
  65. Vahabi K, Camehl I, Sherameti I, Oelmüller R (2013) Growth of Arabidopsis seedlings on high fungal doses of Piriformospora indica has little effect on plant performance, stress, and defense gene expression in spite of elevated jasmonic acid and jasmonic acid-isoleucine levels in the roots. Plant Signal Behav 8(11):e26301CrossRefGoogle Scholar
  66. Vahabi K, Sherameti I, Bakshi M, Mrozinska A, Ludwig A, Reichelt M, Oelmüller R (2015) The interaction of Arabidopsis with Piriformospora indica shifts from initial transient stress induced by fungus-released chemical mediators to a mutualistic interaction after physical contact of the two symbionts. BMC Plant Biol 15(1):58Google Scholar
  67. Varma A, Bakshi M, Lou B, Hartmann A, Oelmueller R (2012) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agribiol Res 1(2):117–131CrossRefGoogle Scholar
  68. Varma A, Singh A, Sahay NS, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Hurek T, Blechert O, Rexer KH, Kost G, Hahn A, Maier W, Walter M, Strack D, Kranner I (2001) Piriformospora indica: an axenically culturable mycorrhiza-like endosymbiotic fungus. In: Hock B (ed) Fungal Associations. The mycota (A comprehensive treatise on fungi as experimental systems for basic and applied research), vol 9. Springer, Berlin/Heidelberg. CrossRefGoogle Scholar
  69. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, Von-Wettstein D, Franken P (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102(38):13386–13391. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wei Y, Yi T, Huntington KM, Chaudhury C, Pei D (2000) Identification of a potent peptide deformylase inhibitor from a rationally designed combinatorial library. J Comb Chem 2:650–657. CrossRefPubMedGoogle Scholar
  71. Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem 285(34):26532–26544. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Yamada A, Saitoh T, Mimura T, Ozeki Y (2002) Expression of mangrove allene oxidecyclase enhances salt tolerance in Escherichia coli, yeast, and tobacco cells. Plant Cell Physiol 43:903–910. CrossRefPubMedGoogle Scholar
  73. Yoon JY, Hamayun M, Lee SK, Lee IJ (2009) Methyl jasmonate alleviated salinity stress in soybean. J Crop Sci Biotechnol 12:63–68. CrossRefGoogle Scholar
  74. Yuan Z, Dai C, Chen L (2007) Regulation and accumulation of secondary metabolites in plant-fungus symbiotic system. Afr J Biotechnol 6:1266–1271Google Scholar
  75. Zhao Y, Dong W, Zhang N, Ai X, Wang M, Huang Z, Xiao L, Xia G (2014) A wheat allene oxidecyclase gene enhances salinity tolerance via jasmonate signaling. Plant Physiol 164(2):1068–1076. CrossRefPubMedGoogle Scholar
  76. Zuccaro A, Lahrmann U, Güldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M, Murat C (2011) Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog 7(10):e1002290CrossRefGoogle Scholar
  77. Zuiiiga GE, Copaja SV, Bravo HR, Argandoiia VH (1990) Hydroxamic acids accumulation by wheat callus. Phytochemistry 29:2139–2141. CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Bansh Narayan Singh
    • 1
    • 2
  • Akash Hidangmayum
    • 1
  • Ankita Singh
    • 1
  • Shailendra Singh Shera
    • 3
  • Padmanabh Dwivedi
    • 1
  1. 1.Department of Plant Physiology, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia
  2. 2.Institute of Environment & Sustainable DevelopmentBanaras Hindu UniversityVaranasiIndia
  3. 3.School of Biochemical Engineering, Indian Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations