Advertisement

Integration Technologies in Gas Sensor Application

  • Yonghui Deng
Chapter

Abstract

In recent decades, electronic nose (e-nose) devices that consist of a multisensor array have drawn a considerable attention due to their wide application fields ranging manufacturing, environmental monitoring, medical diagnosis, food industries and military safety. As an interdisciplinary technique, an e-nose system involves not only several gas sensor devices but also pattern recognition algorithms and referential databases, in order to analyze complicated gaseous mixtures like human olfactory organ. This chapter introduces the fundamental concept and constituent of an e-nose and summarizes the data processing methods as well as the applications of e-nose technologies.

Keywords

Electronic-nose (e-nose) Sensors array Statistical analysis E-nose applications 

References

  1. 1.
    Rahman MM, Charoenlarpnopparut C, Suksompong P, Toochinda P, Taparugssanagorn A (2017) A false alarm reduction method for a gas sensor based electronic nose. Sensors 17(9).  https://doi.org/10.3390/s17092089CrossRefGoogle Scholar
  2. 2.
    Hsieh Y-C, Yao D-J (2018) Intelligent gas-sensing systems and their applications. J Micromech Microeng 28(9):093001.  https://doi.org/10.1088/1361-6439/aac849CrossRefGoogle Scholar
  3. 3.
    Zhou X, Cheng X, Zhu Y, Elzatahry AA, Alghamdi A, Deng Y, Zhao D (2018) Ordered porous metal oxide semiconductors for gas sensing. Chin Chem Lett 29(3):405–416.  https://doi.org/10.1016/j.cclet.2017.06.021CrossRefGoogle Scholar
  4. 4.
    Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3):2088–2106.  https://doi.org/10.3390/s100302088CrossRefGoogle Scholar
  5. 5.
    Zhou X, Zhu Y, Luo W, Ren Y, Xu P, Elzatahry AA, Cheng X, Alghamdi A, Deng Y, Zhao D (2016) Chelation-assisted soft-template synthesis of ordered mesoporous zinc oxides for low concentration gas sensing. J Mater Chem A 4(39):15064–15071.  https://doi.org/10.1039/c6ta05687cCrossRefGoogle Scholar
  6. 6.
    Lee J-H (2009) Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens Actuators B 140(1):319–336.  https://doi.org/10.1016/j.snb.2009.04.026CrossRefGoogle Scholar
  7. 7.
    Wilkens WF, Hartman JD (1964) An electronic analog for the olfactory processes. Ann N Y Acad Sci 116(A2).  https://doi.org/10.1111/j.1749-6632.1964.tb45092.xCrossRefGoogle Scholar
  8. 8.
    Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299(5881).  https://doi.org/10.1038/299352a0CrossRefGoogle Scholar
  9. 9.
    Gardner JW, Bartlett PN (1994) A brief-history of electronic noses. Sens Actuators B 18(1–3):211–220Google Scholar
  10. 10.
    Wilson AD, Baietto M (2009) Applications and advances in electronic-nose technologies. Sensors 9(7):5099–5148.  https://doi.org/10.3390/s90705099CrossRefGoogle Scholar
  11. 11.
    Berna A (2010) Metal oxide sensors for electronic noses and their application to food analysis. Sensors 10(4):3882–3910.  https://doi.org/10.3390/s100403882CrossRefGoogle Scholar
  12. 12.
    Dymerski TM, Chmiel TM, Wardencki W (2011) Invited review article: an odor-sensing system–powerful technique for foodstuff studies. Rev Sci Instrum 82(11):111101.  https://doi.org/10.1063/1.3660805CrossRefGoogle Scholar
  13. 13.
    Scott SM, James D, Ali Z (2006) Data analysis for electronic nose systems. Microchim Acta 156(3–4):183–207.  https://doi.org/10.1007/s00604-006-0623-9CrossRefGoogle Scholar
  14. 14.
    Buratti S, Benedetti S, Scampicchio M, Pangerod EC (2004) Characterization and classification of Italian Barbera wines by using an electronic nose and an amperometric electronic tongue. Anal Chim Acta 525(1):133–139.  https://doi.org/10.1016/j.aca.2004.07.062CrossRefGoogle Scholar
  15. 15.
    Olsson J, Borjesson T, Lundstedt T, Schnurer J (2002) Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose. Int J Food Microbiol 72(3):203–214.  https://doi.org/10.1016/s0168-1605(01)00685-7CrossRefGoogle Scholar
  16. 16.
    Dutta R, Hines EL, Gardner JW, Kashwan KR, Bhuyan A (2003) Tea quality prediction using a tin oxide-based electronic nose: an artificial intelligence approach. Sens Actuators B 94(2):228–237.  https://doi.org/10.1016/s0925-4005(03)00367-8CrossRefGoogle Scholar
  17. 17.
    Dragonieri S, Annema JT, Schot R, van der Schee MPC, Spanevello A, Carratu P, Resta O, Rabe KF, Sterk PJ (2009) An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer 64(2):166–170.  https://doi.org/10.1016/j.lungcan.2008.08.008CrossRefGoogle Scholar
  18. 18.
    Gutierrez-Osuna R (2002) Pattern analysis for machine olfaction: a review. IEEE Sens J 2(3):189–202.  https://doi.org/10.1109/jsen.2002.800688CrossRefGoogle Scholar
  19. 19.
    Schaller E, Bosset JO, Escher F (1998) Electronic noses and their application to food. Food Sci Technol Lebensm Wiss Technol 31(4):305–316.  https://doi.org/10.1006/fstl.1998.0376CrossRefGoogle Scholar
  20. 20.
    Sysoev VV, Goschnick J, Schneide T, Strelcov E, Kolmakov A (2007) A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett 7(10).  https://doi.org/10.1021/nl071815
  21. 21.
    Benkstein KD, Raman B, Lahr DL, Bonevich JE, Semancik S (2009) Inducing analytical orthogonality in tungsten oxide-based microsensors using materials structure and dynamic temperature control. Sens Actuators B 137(1):48–55.  https://doi.org/10.1016/j.snb.2008.10.029CrossRefGoogle Scholar
  22. 22.
    Shen F, Wu Q, Liu P, Jiang X, Fang Y, Cao C (2018) Detection of Aspergillus spp. contamination levels in peanuts by near infrared spectroscopy and electronic nose. Food Control 93:1–8.  https://doi.org/10.1016/j.foodcont.2018.05.039CrossRefGoogle Scholar
  23. 23.
    Wu H, Yue T, Xu Z, Zhang C (2017) Sensor array optimization and discrimination of apple juices according to variety by an electronic nose. Anal Methods 9(6):921–928.  https://doi.org/10.1039/c6ay02610aCrossRefGoogle Scholar
  24. 24.
    Upadhyay R, Sehwag S, Mishra HN (2017) Electronic nose guided determination of frying disposal time of sunflower oil using fuzzy logic analysis. Food Chem 221:379–385.  https://doi.org/10.1016/j.foodchem.2016.10.089CrossRefGoogle Scholar
  25. 25.
    Park SW, Lee SJ, Sim YS, Choi JY, Park EY, Noh BS (2017) Analysis of ethanol in soy sauce using electronic nose for halal food certification. Food Sci Biotechnol 26(2):311–317.  https://doi.org/10.1007/s10068-017-0042-1CrossRefGoogle Scholar
  26. 26.
    Baskar C, Nesakumar N, Balaguru Rayappan JB, Doraipandian M (2017) A framework for analysing E-nose data based on fuzzy set multiple linear regression: paddy quality assessment. Sens Actuators A 267:200–209.  https://doi.org/10.1016/j.sna.2017.10.020CrossRefGoogle Scholar
  27. 27.
    Timsorn K, Thoopboochagorn T, Lertwattanasakul N, Wongchoosuk C (2016) Evaluation of bacterial population on chicken meats using a briefcase electronic nose. Biosys Eng 151:116–125.  https://doi.org/10.1016/j.biosystemseng.2016.09.005CrossRefGoogle Scholar
  28. 28.
    Lippolis V, Ferrara M, Cervellieri S, Damascelli A, Epifani F, Pascale M, Perrone G (2016) Rapid prediction of ochratoxin A-producing strains of penicillium on dry-cured meat by MOS-based electronic nose. Int J Food Microbiol 218:71–77.  https://doi.org/10.1016/j.ijfoodmicro.2015.11.011CrossRefGoogle Scholar
  29. 29.
    Miao J, Luo Z, Wang Y, Li G (2016) Comparison and data fusion of an electronic nose and near-infrared reflectance spectroscopy for the discrimination of ginsengs. Anal Methods 8(6):1265–1273.  https://doi.org/10.1039/c5ay03270aCrossRefGoogle Scholar
  30. 30.
    Gan Z, Yang Y, Li J, Wen X, Zhu M, Jiang Y, Ni Y (2016) Using sensor and spectral analysis to classify botanical origin and determine adulteration of raw honey. J Food Eng 178:151–158.  https://doi.org/10.1016/j.jfoodeng.2016.01.016CrossRefGoogle Scholar
  31. 31.
    Huang L, Liu H, Zhang B, Wu D (2014) Application of electronic nose with multivariate analysis and sensor selection for botanical origin identification and quality determination of honey. Food Bioprocess Technol 8(2):359–370.  https://doi.org/10.1007/s11947-014-1407-6CrossRefGoogle Scholar
  32. 32.
    Rodriguez-Mendez ML, Apetrei C, Gay M, Medina-Plaza C, de Saja JA, Vidal S, Aagaard O, Ugliano M, Wirth J, Cheynier V (2014) Evaluation of oxygen exposure levels and polyphenolic content of red wines using an electronic panel formed by an electronic nose and an electronic tongue. Food Chem 155:91–97.  https://doi.org/10.1016/j.foodchem.2014.01.021CrossRefGoogle Scholar
  33. 33.
    Rodriguez J, Duran C, Reyes A (2010) Electronic nose for quality control of Colombian coffee through the detection of defects in “Cup Tests”. Sensors 10(1):36–46.  https://doi.org/10.3390/s100100036CrossRefGoogle Scholar
  34. 34.
    Kuske M, Romain A-C, Nicolas J (2005) Microbial volatile organic compounds as indicators of fungi. Can an electronic nose detect fungi in indoor environments? Build Environ 40(6):824–831.  https://doi.org/10.1016/j.buildenv.2004.08.012CrossRefGoogle Scholar
  35. 35.
    Helli O, Siadat M, Lumbreras M (2004) Qualitative and quantitative identification of H2S/NO2 gaseous components in different reference atmospheres using a metal oxide sensor array. Sens Actuators B 103(1–2):403–408.  https://doi.org/10.1016/j.snb.2004.04.069CrossRefGoogle Scholar
  36. 36.
    Bieganowski A, Jozefaciuk G, Bandura L, Guz L, Lagod G, Franus W (2018) Evaluation of hydrocarbon soil pollution using E-nose. Sensors 18(8).  https://doi.org/10.3390/s18082463CrossRefGoogle Scholar
  37. 37.
    Blanco-Rodríguez A, Camara VF, Campo F, Becherán L, Durán A, Vieira VD, de Melo H, Garcia-Ramirez AR (2018) Development of an electronic nose to characterize odours emitted from different stages in a wastewater treatment plant. Water Res 134:92–100.  https://doi.org/10.1016/j.watres.2018.01.067CrossRefGoogle Scholar
  38. 38.
    Capelli L, Sironi S, Del Rosso R (2014) Electronic noses for environmental monitoring applications. Sensors 14(11):19979–20007.  https://doi.org/10.3390/s141119979CrossRefGoogle Scholar
  39. 39.
    Dragonieri S, Pennazza G, Carratu P, Resta O (2017) Electronic nose technology in respiratory diseases. Lung 195(2):157–165.  https://doi.org/10.1007/s00408-017-9987-3CrossRefGoogle Scholar
  40. 40.
    Adiguzel Y, Kulah H (2015) Breath sensors for lung cancer diagnosis. Biosens Bioelectron 65:121–138.  https://doi.org/10.1016/j.bios.2014.10.023CrossRefGoogle Scholar
  41. 41.
    Wilson AD (2015) Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath. Metabolites 5(1):140–163.  https://doi.org/10.3390/metabo5010140CrossRefGoogle Scholar
  42. 42.
    Gibson TD, Prosser O, Lowery P, Hulbert JN, Ruck-Keene EA, Marshall RW, Corcoran P, Lowery P, Ruck-Keene EA, Heron S (1997) Detection and simultaneous identification of microorganisms from headspace samples using an electronic nose. Sens Actuators B 44:413–422.  https://doi.org/10.1016/S0925-4005(97)00235-9CrossRefGoogle Scholar
  43. 43.
    Wang Z, Wang C, Lathan P (2014) Breath acetone analysis of diabetic dogs using a cavity ringdown breath analyzer. IEEE Sens J 14(4):1117–1123.  https://doi.org/10.1109/jsen.2013.2293705CrossRefGoogle Scholar
  44. 44.
    Turner C, Walton C, Hoashi S, Evans M (2009) Breath acetone concentration decreases with blood glucose concentration in type I diabetes mellitus patients during hypoglycaemic clamps. J Breath Res 3(4).  https://doi.org/10.1088/1752-7155/3/4/046004CrossRefGoogle Scholar
  45. 45.
    Li W, Liu Y, Lu X, Huang Y, Liu Y, Cheng S, Duan Y (2015) A cross-sectional study of breath acetone based on diabetic metabolic disorders. J Breath Res 9(1).  https://doi.org/10.1088/1752-7155/9/1/016005CrossRefGoogle Scholar
  46. 46.
    Spahn JD, Malka J, Szefler SJ (2016) Current application of exhaled nitric oxide in clinical practice. J Allergy Clin Immunol 138(5):1296–1298.  https://doi.org/10.1016/j.jaci.2016.09.002CrossRefGoogle Scholar
  47. 47.
    Malmberg LP (2004) Exhaled nitric oxide in childhood asthma—time to use inflammometry rather than spirometry? J Asthma 41(5):511–520.  https://doi.org/10.1081/jas-120037652CrossRefGoogle Scholar
  48. 48.
    Simpson JL, Wark PA (2008) The role of exhaled nitric oxide and exhaled breath condensates in evaluating airway inflammation in asthma. Expert Opin Med Diagn 2(6):607–620.  https://doi.org/10.1517/17530059.2.6.607CrossRefGoogle Scholar
  49. 49.
    Silva LIB, Freitas AC, Rocha-Santos TAP, Pereira ME, Duarte AC (2011) Breath analysis by optical fiber sensor for the determination of exhaled organic compounds with a view to diagnostics. Talanta 83(5):1586–1594.  https://doi.org/10.1016/j.talanta.2010.11.056CrossRefGoogle Scholar
  50. 50.
    Liu FL, Xiao P, Fang HL, Dai HF, Qiao L, Zhang YH (2011) Single-walled carbon nanotube-based biosensors for the detection of volatile organic compounds of lung cancer. Phys E-Low-Dimensional Syst Nanostruct 44(2):367–372.  https://doi.org/10.1016/j.physe.2011.08.033CrossRefGoogle Scholar
  51. 51.
    Sehnert SS, Jiang L, Burdick JF, Risby TH (2002) Breath biomarkers for detection of human liver diseases: preliminary study. Biomarkers 7(2):174–187.  https://doi.org/10.1080/13547500110118184CrossRefGoogle Scholar
  52. 52.
    Mochalski P, Wzorek B, Sliwka I, Amann A (2009) Suitability of different polymer bags for storage of volatile sulphur compounds relevant to breath analysis. J Chromatogr B Anal Technol Biomed Life Sci 877(3):189–196.  https://doi.org/10.1016/j.jchromb.2008.12.003CrossRefGoogle Scholar
  53. 53.
    Moon HG, Jung Y, Han SD, Shim Y-S, Jung W-S, Lee T, Lee S, Park JH, Baek S-H, Kim J-S, Park H-H, Kim C, Kang C-Y (2018) All villi-like metal oxide nanostructures-based chemiresistive electronic nose for an exhaled breath analyzer. Sens Actuators B 257:295–302.  https://doi.org/10.1016/j.snb.2017.10.153CrossRefGoogle Scholar
  54. 54.
    Dragonieri S, Schot R, Mertens BJ, Le Cessie S, Gauw SA, Spanevello A, Resta O, Willard NP, Vink TJ, Rabe KF, Bel EH, Sterk PJ (2007) An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol 120(4):856–862.  https://doi.org/10.1016/j.jaci.2007.05.043CrossRefGoogle Scholar
  55. 55.
    de Vries R, Brinkman P, van der Schee MP, Fens N, Dijkers E, Bootsma SK, de Jongh FH, Sterk PJ (2015) Integration of electronic nose technology with spirometry: validation of a new approach for exhaled breath analysis. J Breath Res 9(4):046001.  https://doi.org/10.1088/1752-7155/9/4/046001CrossRefGoogle Scholar
  56. 56.
    Incalzi RA, Pennazza G, Scarlata S, Santonico M, Petriaggi M, Chiurco D, Pedone C, D’Amico A (2012) Reproducibility and respiratory function correlates of exhaled breath fingerprint in chronic obstructive pulmonary disease. PLoS ONE 7(10):e45396.  https://doi.org/10.1371/journal.pone.0045396CrossRefGoogle Scholar
  57. 57.
    Shafiek H, Fiorentino F, Merino JL, Lopez C, Oliver A, Segura J, de Paul I, Sibila O, Agusti A, Cosio BG (2015) Using the electronic nose to identify airway infection during COPD exacerbations. PLoS ONE 10(9):e0135199.  https://doi.org/10.1371/journal.pone.0135199CrossRefGoogle Scholar
  58. 58.
    Thriumani R, Zakaria A, Hashim YZH, Jeffree AI, Helmy KM, Kamarudin LM, Omar MI, Shakaff AYM, Adom AH, Persaud KC (2018) A study on volatile organic compounds emitted by in-vitro lung cancer cultured cells using gas sensor array and SPME-GCMS. BMC Cancer 18(1):362.  https://doi.org/10.1186/s12885-018-4235-7CrossRefGoogle Scholar
  59. 59.
    Tirzite M, Bukovskis M, Strazda G, Jurka N, Taivans I (2017) Detection of lung cancer in exhaled breath with an electronic nose using support vector machine analysis. J Breath Res 11(3):036009.  https://doi.org/10.1088/1752-7163/aa7799CrossRefGoogle Scholar
  60. 60.
    Güntner AT, Koren V, Chikkadi K, Righettoni M, Pratsinis SE (2016) E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer? ACS Sens 1(5):528–535.  https://doi.org/10.1021/acssensors.6b00008CrossRefGoogle Scholar
  61. 61.
    Li W, Liu H, Xie D, He Z, Pi X (2017) Lung cancer screening based on type-different sensor arrays. Sci Rep 7(1):1969.  https://doi.org/10.1038/s41598-017-02154-9CrossRefGoogle Scholar
  62. 62.
    De Vincentis A, Pennazza G, Santonico M, Vespasiani-Gentilucci U, Galati G, Gallo P, Vernile C, Pedone C, Antonelli Incalzi R, Picardi A (2016) Breath-print analysis by e-nose for classifying and monitoring chronic liver disease: a proof-of-concept study. Sci Rep 6:25337.  https://doi.org/10.1038/srep25337CrossRefGoogle Scholar
  63. 63.
    Schnabel RM, Boumans ML, Smolinska A, Stobberingh EE, Kaufmann R, Roekaerts PM, Bergmans DC (2015) Electronic nose analysis of exhaled breath to diagnose ventilator-associated pneumonia. Respir Med 109(11):1454–1459.  https://doi.org/10.1016/j.rmed.2015.09.014CrossRefGoogle Scholar
  64. 64.
    Arasaradnam RP, Quraishi N, Kyrou I, Nwokolo CU, Joseph M, Kumar S, Bardhan KD, Covington JA (2011) Insights into ‘fermentonomics’: evaluation of volatile organic compounds (VOCs) in human disease using an electronic ‘e-nose’. J Med Eng Technol 35(2):87–91.  https://doi.org/10.3109/03091902.2010.539770CrossRefGoogle Scholar
  65. 65.
    Yan K, Zhang D, Wu D, Wei H, Zhu G (2014) Design of a breath analysis system for diabetes screening and blood glucose level prediction. IEEE Trans Biomed Eng 61(11):2787.  https://doi.org/10.1109/TBME.2014.2329753CrossRefGoogle Scholar
  66. 66.
    Guo D, Zhang D, Li N, Zhang L, Yang J (2010) A novel breath analysis system based on electronic olfaction. IEEE Trans Biomed Eng 57(11):2753.  https://doi.org/10.1109/TBME.2010.2055864CrossRefGoogle Scholar
  67. 67.
    Rocco G (2018) Every breath you take: the value of the electronic nose (e-nose) technology in the early detection of lung cancer. J Thorac Cardiovasc Surg 155(6):2622–2625.  https://doi.org/10.1016/j.jtcvs.2017.12.155CrossRefGoogle Scholar
  68. 68.
    Fitzgerald J, Fenniri H (2017) Cutting edge methods for non-invasive disease diagnosis using E-tongue and E-nose devices. Biosensors (Basel) 7(4).  https://doi.org/10.3390/bios7040059CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yonghui Deng
    • 1
  1. 1.Department of ChemistryFudan UniversityShanghaiChina

Personalised recommendations