Advertisement

Semiconducting Metal Oxides: Microstructure and Sensing Performance

  • Yonghui DengEmail author
Chapter

Abstract

Gas sensors, as an efficient tool to monitor environmental safety and detect harmful gases, have aroused great attentions in various fields. Novel and multifunctional sensing materials are the key factor in the practical applications. Semiconducting metal oxides have been regarded as the most important sensing material due to their adjustable phase composition and physicochemical properties. In the view of materials, the gas sensing performance of semiconducting metal oxides is strongly dependent on microstructure, including compositions, defects, grains, morphology and so on. This chapter aims to provide in-depth understanding of the effect of microstructure and exhibit the roles or function of traditional physical factor and interfacial engineering. In this context, a brief overview of the advanced development of semiconducting metal oxides and their potential application in gas sensing is also contained. Recent progresses in heterogeneous interface, physical parameters of microstructure and their interaction mechanism is included in this chapter.

Keywords

Metal oxides structures Grain size Porous structure Heterogeneous interface Internal defects 

References

  1. 1.
    Basu S, Bhattacharyya P (2012) Recent developments on graphene and graphene oxide based solid state gas sensors. Sens Actuators B 173:1–21.  https://doi.org/10.1016/j.snb.2012.07.092CrossRefGoogle Scholar
  2. 2.
    Comini E, Faglia G, Sberveglieri G, Pan Z, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81:1869–1871.  https://doi.org/10.1063/1.1504867CrossRefGoogle Scholar
  3. 3.
    Natale CD, Paolesse R, Martinelli E, Capuano R (2014) Solid-state gas sensors for breath analysis: a review. Anal Chim Acta 824:1–17.  https://doi.org/10.1016/j.aca.2014.03.014CrossRefGoogle Scholar
  4. 4.
    Fergus JW (2007) Perovskite oxides for semiconductor-based gas sensors. Sens Actuators B 123:1169–1179.  https://doi.org/10.1016/j.aca.2014.03.014CrossRefGoogle Scholar
  5. 5.
    Fine GF, Cavanagh LM, Afonja A, Binions R (2010) Metal oxide semiconductor gas sensors in environmental monitoring. Sensors 10:5469–5502.  https://doi.org/10.3390/s100605469CrossRefGoogle Scholar
  6. 6.
    Zhou X, Lee S, Xu Z, Yoon J (2015) Recent progress on the development of chemosensors for gases. Chem Rev 115:7944–8000.  https://doi.org/10.1021/cr500567rCrossRefGoogle Scholar
  7. 7.
    Zhou X, Cheng X, Zhu Y, Elzatahry AA, Alghamdi A, Deng Y, Zhao D (2017) Ordered porous metal oxide semiconductors for gas sensing. Chin Chem Lett 29:405–416.  https://doi.org/10.1016/j.cclet.2017.06.021CrossRefGoogle Scholar
  8. 8.
    Miller DR, Akbar SA, Morris PA (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuators B 204:250–272.  https://doi.org/10.1016/j.snb.2014.07.074CrossRefGoogle Scholar
  9. 9.
    Huang H, Gong H, Chow CL, Guo J, White TJ, Tse MS, Tan OK (2011) Low-temperature growth of SnO2 nanorod arrays and tunable n–p–n sensing response of a ZnO/SnO2 heterojunction for exclusive hydrogen sensors. Adv Funct Mater 21:2680–2686.  https://doi.org/10.1002/adfm.201002115CrossRefGoogle Scholar
  10. 10.
    Fu D, Zhu C, Zhang X, Li C, Chen Y (2016) Two-dimensional net-like SnO2/ZnO heteronanostructures for high-performance H2S gas sensor. J Mater Chem A 4:1390–1398.  https://doi.org/10.1039/c5ta09190jCrossRefGoogle Scholar
  11. 11.
    Dhawale DS, Salunkhe RR, Patil UM, Gurav KV, More AM, Lokhande CD (2008) Room temperature liquefied petroleum gas (LPG) sensor based on p-polyaniline/n-TiO2 heterojunction. Sens Actuators B 134:988–992.  https://doi.org/10.1016/j.snb.2008.07.003CrossRefGoogle Scholar
  12. 12.
    Ma J, Ren Y, Zhou X, Liu L, Zhu Y, Cheng X, Xu P, Li X, Deng Y, Zhao D (2017) Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv Funct Mater 28:1705268–1705279.  https://doi.org/10.1002/adfm.201705268CrossRefGoogle Scholar
  13. 13.
    Xiao X, Liu L, Ma J, Ren Y, Cheng X, Zhu Y, Zhao D, Elzatahry AA, Alghamdi A, Deng Y (2018) Ordered mesoporous tin oxide semiconductors with large pores and crystallized walls for high-performance gas sensing. ACS Appl Mater Interfaces 10:1871–1880.  https://doi.org/10.1021/acsami.7b18830CrossRefGoogle Scholar
  14. 14.
    Ahn MW, Park KS, Heo JH, Park JG, Kim DW, Choi KJ, Lee JH, Hong SH (2008) Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl Phys Lett 93:263103–263106.  https://doi.org/10.1063/1.3046726CrossRefGoogle Scholar
  15. 15.
    Espid E, Taghipour F (2017) Development of highly sensitive ZnO/In2O3 composite gas sensor activated by UV-LED. Sens Actuators B 241:828–839.  https://doi.org/10.1016/j.snb.2016.10.129CrossRefGoogle Scholar
  16. 16.
    Wu H, Kan K, Wang L, Zhang G, Yang Y, Li H, Jing L, Shen P, Li L, Shi K (2014) Electrospinning of mesoporous p-type In2O3/TiO2 composite nanofibers for enhancing NOx gas sensing properties at room temperature. CrystEngComm 16:9116–9124.  https://doi.org/10.1039/c4ce01248hCrossRefGoogle Scholar
  17. 17.
    Wen Z, Zhu L, Mei W, Hu L, Li Y, Sun L, Cai H, Ye Z (2013) Rhombus-shaped Co3O4 nanorod arrays for high-performance gas sensor. Sens Actuators B 186:172–179.  https://doi.org/10.1016/j.snb.2013.05.093CrossRefGoogle Scholar
  18. 18.
    Wang J, Wei L, Zhang L, Zhang J, Wei H, Jiang C, Zhang Y (2012) Zinc-doped nickel oxide dendritic crystals with fast response and self-recovery for ammonia detection at room temperature. J Mater Chem 22:20038–20047.  https://doi.org/10.1039/c2jm34192aCrossRefGoogle Scholar
  19. 19.
    Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10:2088–2106.  https://doi.org/10.3390/s100302088CrossRefGoogle Scholar
  20. 20.
    Li Y, Luo W, Qin N, Dong J, Wei J, Li W, Feng S, Chen J, Xu J, Elzatahry AA, Es-Saheb MH, Deng Y, Zhao D (2014) Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2 sensing. Angew Chem Int Ed 53:9035–9040.  https://doi.org/10.1002/anie.201403817CrossRefGoogle Scholar
  21. 21.
    Ren Y, Zhou X, Luo W, Xu P, Zhu Y, Li X, Cheng X, Deng Y, Zhao D (2016) Amphiphilic block copolymer templated synthesis of mesoporous indium oxides with nanosheet-assembled pore walls. Chem Mater 28:7997–8005.  https://doi.org/10.1021/acs.chemmater.6b03733CrossRefGoogle Scholar
  22. 22.
    Wen Z, Zhu L, Li Y, Zhang Z, Ye Z (2014) Mesoporous Co3O4 nanoneedle arrays for high-performance gas sensor. Sens Actuators B 203:873–879.  https://doi.org/10.1016/j.snb.2014.06.124CrossRefGoogle Scholar
  23. 23.
    Nguyen H, El-Safty SA (2011) Meso- and macroporous Co3O4 nanorods for effective VOC gas sensors. J Phys Chem C 115:8466–8474.  https://doi.org/10.1021/jp1116189CrossRefGoogle Scholar
  24. 24.
    Han D, Zhai L, Gu F, Wang Z (2018) Highly sensitive NO2 gas sensor of ppb-level detection based on In2O3 nanobricks at low temperature. Sens Actuators B 262:655–663.  https://doi.org/10.1016/j.snb.2018.02.052CrossRefGoogle Scholar
  25. 25.
    Garcia-Sanchez RF, Ahmido T, Casimir D, Baliga S, Misra P (2013) Thermal effects associated with the Raman spectroscopy of WO3 gas-sensor materials. J Phys Chem A 117:13825–13831.  https://doi.org/10.1021/jp408303pCrossRefGoogle Scholar
  26. 26.
    Dandeneau CS, Jeon YH, Shelton CT, Plant TK, Cann DP, Gibbons BJ (2009) Thin film chemical sensors based on p-CuO/n-ZnO heterocontacts. Thin Solid Films 517:4448–4454.  https://doi.org/10.1016/j.tsf.2009.01.054CrossRefGoogle Scholar
  27. 27.
    Rahman MM, Ahammad AJ, Jin JH, Ahn SJ, Lee JJ (2010) A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10:4855–4886.  https://doi.org/10.3390/s100504855CrossRefGoogle Scholar
  28. 28.
    Mirzaei A, Leonardi SG, Neri G (2016) Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram Int 42:15119–15141.  https://doi.org/10.1016/j.ceramint.2016.06.145CrossRefGoogle Scholar
  29. 29.
    Eranna G, Joshi BC, Runthala DP, Gupta RP (2010) Oxide materials for development of integrated gas sensors—a comprehensive review. Crit Rev Solid State Mater Sci 29:111–188.  https://doi.org/10.1080/10408430490888977CrossRefGoogle Scholar
  30. 30.
    Arafat MM, Dinan B, Akbar SA, Haseeb AS (2012) Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12:7207–7258.  https://doi.org/10.3390/s120607207CrossRefGoogle Scholar
  31. 31.
    Wei BY, Hsu MC, Su PG, Lin HM, Wu RJ, Lai HJ (2004) A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature. Sens Actuators B 101:81–89.  https://doi.org/10.1016/j.snb.2004.02.028CrossRefGoogle Scholar
  32. 32.
    Shishiyanu ST, Shishiyanu TS, Lupan OI (2005) Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor. Sens Actuators B 107:379–386.  https://doi.org/10.1016/j.snb.2004.10.030CrossRefGoogle Scholar
  33. 33.
    Wan Q, Wang TH (2005) Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application. Chem Commun 30:3841–3843.  https://doi.org/10.1039/b504094aCrossRefGoogle Scholar
  34. 34.
    Righettoni M, Tricoli A, Gass S, Schmid A, Amann A, Pratsinis SE (2012) Breath acetone monitoring by portable Si:WO3 gas sensors. Anal Chim Acta 738:69–75.  https://doi.org/10.1016/j.aca.2012.06.002CrossRefGoogle Scholar
  35. 35.
    Zhang Y, He W, Zhao H, Li P (2013) Template-free to fabricate highly sensitive and selective acetone gas sensor based on WO3 microspheres. Vacuum 95:30–34.  https://doi.org/10.1016/j.vacuum.2013.02.005CrossRefGoogle Scholar
  36. 36.
    Su PG, Peng YT (2014) Fabrication of a room-temperature H2S gas sensor based on PPy/WO3 nanocomposite films by in-situ photopolymerization. Sens Actuators B 193:637–643.  https://doi.org/10.1016/j.snb.2013.12.027CrossRefGoogle Scholar
  37. 37.
    Ling Z, Leach C (2004) The effect of relative humidity on the NO2 sensitivity of a SnO2/WO3 heterojunction gas sensor. Sens Actuators B 102:102–106.  https://doi.org/10.1016/j.snb.2004.02.017CrossRefGoogle Scholar
  38. 38.
    Kukkola J, Mohl M, Leino AR, Tóth G, Wu MC, Shchukarev A, Popov A, Mikkola JP, Lauri J, Riihimäki M, Lappalainen J, Jantunen H, Kordás K (2012) Inkjet-printed gas sensors: metal decorated WO3 nanoparticles and their gas sensing properties. J Mater Chem 22:17878–17886.  https://doi.org/10.1039/c2jm32499gCrossRefGoogle Scholar
  39. 39.
    Adami A, Lorenzelli L, Guarnieri V, Francioso L, Forleo A, Agnusdei G, Taurino AM, Zen M, Siciliano P (2006) A WO3-based gas sensor array with linear temperature gradient for wine quality monitoring. Sens Actuators B 117:115–122.  https://doi.org/10.1016/j.snb.2005.11.006CrossRefGoogle Scholar
  40. 40.
    Lee I, Choi SJ, Park KM, Lee SS, Choi S, Kim ID, Park CO (2014) The stability, sensitivity and response transients of ZnO, SnO2 and WO3 sensors under acetone, toluene and H2S environments. Sens Actuators B 197:300–307.  https://doi.org/10.1016/j.snb.2014.02.043CrossRefGoogle Scholar
  41. 41.
    Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S (2015) Ultra-sensitive H2S sensors based on hydrothermal/impregnation-made Ru-functionalized WO3 nanorods. Sens Actuators B 215:630–636.  https://doi.org/10.1016/j.snb.2015.03.037CrossRefGoogle Scholar
  42. 42.
    Kim SJ, Hwang IS, Na CW, Kim ID, Kang YC, Lee JH (2011) Ultrasensitive and selective C2H5OH sensors using Rh-loaded In2O3 hollow spheres. J Mater Chem 21:18560–18567.  https://doi.org/10.1039/c1jm14252fCrossRefGoogle Scholar
  43. 43.
    Wang S, Xiao B, Yang T, Wang P, Xiao C, Li Z, Zhao R, Zhang M (2014) Enhanced HCHO gas sensing properties by Ag-loaded sunflower-like In2O3 hierarchical nanostructures. J Mater Chem A 2:6598–6604.  https://doi.org/10.1039/c3ta15110gCrossRefGoogle Scholar
  44. 44.
    Zhao J, Yang T, Liu Y, Wang Z, Li X, Sun Y, Du Y, Li Y, Lu G (2014) Enhancement of NO2 gas sensing response based on ordered mesoporous Fe-doped In2O3. Sens Actuators B 191:806–812.  https://doi.org/10.1016/j.snb.2013.09.118CrossRefGoogle Scholar
  45. 45.
    Vyas R, Kumar P, Dwivedi J, Sharma S, Khan S, Divakar R, Anshul A, Sachdev K, Sharma SK, Gupta BK (2014) Probing luminescent Fe-doped ZnO nanowires for high-performance oxygen gas sensing application. RSC Adv 4:54953–54959.  https://doi.org/10.1039/c4ra08586hCrossRefGoogle Scholar
  46. 46.
    Schmidt-Mende L, MacManus-Driscoll JL (2007) ZnO-nanostructures, defects, and devices. Mater Today 10:40–48.  https://doi.org/10.1016/S1369-7021(07)70078-0CrossRefGoogle Scholar
  47. 47.
    Liu C, Wang B, Wang T, Liu J, Sun P, Chuai X, Lu G (2017) Enhanced gas sensing characteristics of the flower-like ZnFe2O4/ZnO microstructures. Sens Actuators B 248:902–909.  https://doi.org/10.1016/j.snb.2017.01.133CrossRefGoogle Scholar
  48. 48.
    Rossinyol E, Prim A, Pellicer E, Arbiol J, Hernández-Ramírez F, Peiró F, Cornet A, Morante JR, Solovyov LA, Tian B, Bo T, Zhao D (2007) Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas sensing applications. Adv Funct Mater 17:1801–1806.  https://doi.org/10.1002/adfm.200600722CrossRefGoogle Scholar
  49. 49.
    Tabassum R, Mishra SK, Gupta BD (2013) Surface plasmon resonance-based fiber optic hydrogen sulphide gas sensor utilizing Cu–ZnO thin films. Phys Chem Chem Phys 15:11868–11874.  https://doi.org/10.1039/c3cp51525gCrossRefGoogle Scholar
  50. 50.
    Qin J, Cui Z, Yang X, Zhu S, Li Z, Liang Y (2015) Synthesis of three-dimensionally ordered macroporous LaFeO3 with enhanced methanol gas sensing properties. Sens Actuators B 209:706–713.  https://doi.org/10.1016/j.snb.2014.12.046CrossRefGoogle Scholar
  51. 51.
    Wang N, Shen K, Huang L, Yu X, Qian W, Chu W (2013) Facile route for synthesizing ordered mesoporous Ni–Ce–Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas. ACS Catal 3:1638–1651.  https://doi.org/10.1021/cs4003113CrossRefGoogle Scholar
  52. 52.
    Yang H, Zhang X, Li J, Li W, Xi G, Yan Y, Bai H (2014) Synthesis of mesostructured indium oxide doped with rare earth metals for gas detection. Microporous Mesoporous Mater 200:140–144.  https://doi.org/10.1016/j.micromeso.2014.08.021CrossRefGoogle Scholar
  53. 53.
    Zhang Y, Yang Q, Yang X, Deng Y (2018) One-step synthesis of in-situ N-doped ordered mesoporous titania for enhanced gas sensing performance. Microporous Mesoporous Mater 270:75–81.  https://doi.org/10.1016/j.micromeso.2018.04.008CrossRefGoogle Scholar
  54. 54.
    Wang Z, Zhu Y, Luo W, Ren Y, Cheng X, Xu P, Li X, Deng Y, Zhao D (2016) Controlled synthesis of ordered mesoporous carbon-cobalt oxide nanocomposites with large mesopores and graphitic walls. Chem Mater 28:7773–7780.  https://doi.org/10.1021/acs.chemmater.6b03035CrossRefGoogle Scholar
  55. 55.
    Liu J, Wang T, Wang B, Sun P, Yang Q, Liang X, Song H, Lu G (2017) Highly sensitive and low detection limit of ethanol gas sensor based on hollow ZnO/SnO2 spheres composite material. Sens Actuators B 245:551–559.  https://doi.org/10.1016/j.snb.2017.01.148CrossRefGoogle Scholar
  56. 56.
    Zhou X, Cao Q, Huang H, Yang P, Hu Y (2003) Study on sensing mechanism of CuO–SnO2 gas sensors. Mater Sci Eng B 99:44–47.  https://doi.org/10.1016/S0921-5107(02)00501-9CrossRefGoogle Scholar
  57. 57.
    Hu Y, Zhou X, Han Q, Cao Q, Huang Y (2003) Sensing properties of CuO–ZnO heterojunction gas sensors. Mater Sci Eng B 99:41–43.  https://doi.org/10.1016/S0921-5107(02)00446-4CrossRefGoogle Scholar
  58. 58.
    Dong C, Liu X, Han B, Deng S, Xiao X, Wang Y (2016) Nonaqueous synthesis of Ag-functionalized In2O3/ZnO nanocomposites for highly sensitive formaldehyde sensor. Sens Actuators B 224:193–200.  https://doi.org/10.1016/j.snb.2015.09.107CrossRefGoogle Scholar
  59. 59.
    Choi KS, Park S, Chang SP (2017) Enhanced ethanol sensing properties based on SnO2 nanowires coated with Fe2O3 nanoparticles. Sens Actuators B 238:871–879.  https://doi.org/10.1016/j.snb.2016.07.146CrossRefGoogle Scholar
  60. 60.
    Chen N, Li X, Wang X, Yu J, Wang J, Tang Z, Akbar SA (2013) Enhanced room temperature sensing of Co3O4-intercalated reduced graphene oxide based gas sensors. Sens Actuators B 188:902–908.  https://doi.org/10.1016/j.snb.2013.08.004CrossRefGoogle Scholar
  61. 61.
    Zhang G, Dang L, Li L, Wang R, Fu H, Shi K (2013) Design and construction of Co3O4/PEI-CNTs composite exhibiting fast responding CO sensor at room temperature. CrystEngComm 15:4730–4738.  https://doi.org/10.1039/c3ce40206aCrossRefGoogle Scholar
  62. 62.
    Yang J, Hidajat K, Kawi S (2008) Synthesis of nano-SnO2/SBA-15 composite as a highly sensitive semiconductor oxide gas sensor. Mater Lett 62:1441–1443.  https://doi.org/10.1016/j.matlet.2007.08.081CrossRefGoogle Scholar
  63. 63.
    Xu C, Tamaki J, Miura N, Yamazoe N (1991) Grain size effects on gas sensitivity of porous SnO2-based elements. Sens Actuators B 3:147–155.  https://doi.org/10.1016/0925-4005(91)80207-zCrossRefGoogle Scholar
  64. 64.
    Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng B 139:1–23.  https://doi.org/10.1016/j.mseb.2007.01.044CrossRefGoogle Scholar
  65. 65.
    Tiemann M (2007) Porous metal oxides as gas sensors. Chem Eur J 13:8376–8388.  https://doi.org/10.1002/chem.200700927CrossRefGoogle Scholar
  66. 66.
    Vuong DD, Sakai G, Shimanoe K, Yamazoe N (2005) Hydrogen sulfide gas sensing properties of thin films derived from SnO2 sols different in grain size. Sens Actuators B 105:437–442.  https://doi.org/10.1016/j.snb.2004.06.034CrossRefGoogle Scholar
  67. 67.
    Vuong DD, Sakai G, Shimanoe K, Yamazoe N (2004) Preparation of grain size-controlled tin oxide sols by hydrothermal treatment for thin film sensor application. Sens Actuators B 103:386–391.  https://doi.org/10.1016/j.snb.2004.04.122CrossRefGoogle Scholar
  68. 68.
    Korotcenkov G, Han SD, Cho BK, Brinzari V (2009) Grain size effects in sensor response of nanostructured SnO2- and In2O3-based conductometric thin film gas sensor. Crit Rev Solid State Mater Sci 34:1–17.  https://doi.org/10.1080/10408430902815725CrossRefGoogle Scholar
  69. 69.
    Rothschild A, Komem Y (2004) The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J Appl Phys 95:6374–6380.  https://doi.org/10.1063/1.1728314CrossRefGoogle Scholar
  70. 70.
    Gurlo A, Ivanovskaya M, Pfau A, Weimar U, Göpel W (1997) Sol–gel prepared In2O3 thin films. Thin Solid Films 307:288–293.  https://doi.org/10.1016/S0040-6090(97)00295-2CrossRefGoogle Scholar
  71. 71.
    Ansari SG, Boroojerdian P, Sainkar SR, Karekar RN, Aiyer RC, Kulkarni SK (1997) Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles. Thin Solid Films 295:271–276.  https://doi.org/10.1016/S0040-6090(96)09152-3CrossRefGoogle Scholar
  72. 72.
    Xu J, Pan Q, Shun Y, Tian Z (2000) Grain size control and gas sensing properties of ZnO gas sensor. Sens Actuators B 66:277–279.  https://doi.org/10.1016/S0925-4005(00)00381-6CrossRefGoogle Scholar
  73. 73.
    Wan Y, Zhao D (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107:2822–2861.  https://doi.org/10.1021/cr068020sCrossRefGoogle Scholar
  74. 74.
    Suib SL (2017) A review of recent developments of mesoporous materials. Chem Rec 17:1169–1183.  https://doi.org/10.1002/tcr.201700025CrossRefGoogle Scholar
  75. 75.
    Ren Y, Ma Z, Bruce PG (2012) Ordered mesoporous metal oxides: synthesis and applications. Chem Soc Rev 41:4909–4927.  https://doi.org/10.1039/c2cs35086fCrossRefGoogle Scholar
  76. 76.
    Zhou X, Zhu Y, Luo W, Ren Y, Xu P, Elzatahry AA, Cheng X, Alghamdi A, Deng Y, Zhao D (2016) Chelation-assisted soft-template synthesis of ordered mesoporous zinc oxides for low concentration gas sensing. J Mater Chem A 4:15064–15071.  https://doi.org/10.1039/c6ta05687cCrossRefGoogle Scholar
  77. 77.
    Tian S, Ding X, Zeng D, Zhang S, Xie C (2013) Pore-size-dependent sensing property of hierarchical SnO2 mesoporous microfibers as formaldehyde sensors. Sens Actuators B 186:640–647.  https://doi.org/10.1016/j.snb.2013.06.073CrossRefGoogle Scholar
  78. 78.
    Xu S, Sun F, Pan Z, Huang C, Yang S, Long J, Chen Y (2016) Reduced graphene oxide-based ordered macroporous films on a curved surface: general fabrication and application in gas sensors. ACS Appl Mater Interfaces 8:3428–3437.  https://doi.org/10.1021/acsami.5b11607CrossRefGoogle Scholar
  79. 79.
    Rossinyol E, Arbiol J, Peiró F, Cornet A, Morante JR, Tian B, Bo T, Zhao D (2005) Nanostructured metal oxides synthesized by hard template method for gas sensing applications. Sens Actuators B 109:57–63.  https://doi.org/10.1016/j.snb.2005.03.016CrossRefGoogle Scholar
  80. 80.
    Shen Y, Yamazaki T, Liu Z, Meng D, Kikuta T, Nakatani N (2009) Influence of effective surface area on gas sensing properties of WO3 sputtered thin films. Thin Solid Films 517:2069–2072.  https://doi.org/10.1016/j.tsf.2008.10.021CrossRefGoogle Scholar
  81. 81.
    Dey A (2018) Semiconductor metal oxide gas sensors: a review. Mater Sci Eng B 229:206–217.  https://doi.org/10.1016/j.mseb.2017.12.036CrossRefGoogle Scholar
  82. 82.
    Li GJ, Zhang XH, Kawi S (1999) Relationships between sensitivity, catalytic activity, and surface areas of SnO2 gas sensors. Sens Actuators B 60:64–70.  https://doi.org/10.1016/S0925-4005(99)00245-2CrossRefGoogle Scholar
  83. 83.
    Li GJ, Kawi S (1998) High-surface-area SnO2: a novel semiconductor-oxide gas sensor. Mater Lett 34:99–102.  https://doi.org/10.1016/S0167-577X(97)00142-0CrossRefGoogle Scholar
  84. 84.
    Xu H, Ju J, Li W, Zhang J, Wang J, Cao B (2016) Superior triethylamine-sensing properties based on TiO2/SnO2 n–n heterojunction nanosheets directly grown on ceramic tubes. Sens Actuators B 228:634–642.  https://doi.org/10.1016/j.snb.2016.01.059CrossRefGoogle Scholar
  85. 85.
    Xing X, Xiao X, Wang L, Wang Y (2017) Highly sensitive formaldehyde gas sensor based on hierarchically porous Ag-loaded ZnO heterojunction nanocomposites. Sens Actuators B 247:797–806.  https://doi.org/10.1016/j.snb.2017.03.077CrossRefGoogle Scholar
  86. 86.
    Zhang YB, Yin J, Li L, Zhang LX, Bie LJ (2014) Enhanced ethanol gas-sensing properties of flower-like p-CuO/n-ZnO heterojunction nanorods. Sens Actuators B 202:500–507.  https://doi.org/10.1016/j.snb.2014.05.111CrossRefGoogle Scholar
  87. 87.
    Xu Z, Duan G, Li Y, Liu G, Zhang H, Dai Z, Cai W (2014) CuO–ZnO micro/nanoporous array-film-based chemosensors: new sensing properties to H2S. Chem Eur J 20:6040–6046.  https://doi.org/10.1002/chem.201304722CrossRefGoogle Scholar
  88. 88.
    Na CW, Woo HS, Kim ID, Lee JH (2011) Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. Chem Commun 47:5148–5150.  https://doi.org/10.1039/c0cc05256fCrossRefGoogle Scholar
  89. 89.
    Waldrop JR, Grant RW (1979) Semiconductor heterojunction interfaces: nontransitivity of energy-band discontiuities. Phys Rev Lett 43:686–1689.  https://doi.org/10.1103/physrevlett.43.1686CrossRefGoogle Scholar
  90. 90.
    Ju D, Xu H, Xu Q, Gong H, Qiu Z, Guo J, Zhang J, Cao B (2015) High triethylamine-sensing properties of NiO/SnO2 hollow sphere P–N heterojunction sensors. Sens Actuators B 215:39–44.  https://doi.org/10.1016/j.snb.2015.03.015CrossRefGoogle Scholar
  91. 91.
    Ma L, Fan H, Tian H, Fang J, Qian X (2016) The n-ZnO/n-In2O3 heterojunction formed by a surface-modification and their potential barrier-control in methanal gas sensing. Sens Actuators B 222:508–516.  https://doi.org/10.1016/j.snb.2015.08.085CrossRefGoogle Scholar
  92. 92.
    Langer JM, Heinrich H (1985) Deep-level impurities: a possible guide to prediction of band-edge discontinuities in semiconductor heterojunctions. Phys Rev Lett 55:1414–1417.  https://doi.org/10.1103/physrevlett.55.1414CrossRefGoogle Scholar
  93. 93.
    Liu J, Guo Z, Meng F, Luo T, Li M, Liu J (2009) Novel porous single-crystalline ZnO nanosheets fabricated by annealing ZnS(en)0.5 (en = ethylenediamine) precursor. Application in a gas sensor for indoor air contaminant detection. Nanotechnology 20:125501–125508.  https://doi.org/10.1088/0957-4484/20/12/125501CrossRefGoogle Scholar
  94. 94.
    Fan SW, Srivastava AK, Dravid VP (2009) UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl Phys Lett 95:142106–142108.  https://doi.org/10.1063/1.3243458CrossRefGoogle Scholar
  95. 95.
    Chen YJ, Xue XY, Wang YG, Wang TH (2005) Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods. Appl Phys Lett 87:233503–233505.  https://doi.org/10.1063/1.2140091CrossRefGoogle Scholar
  96. 96.
    Li X, Wei W, Wang S, Kuai L, Geng B (2011) Single-crystalline alpha-Fe2O3 oblique nanoparallelepipeds: high-yield synthesis, growth mechanism and structure enhanced gas-sensing properties. Nanoscale 3:718–724.  https://doi.org/10.1039/c0nr00617cCrossRefGoogle Scholar
  97. 97.
    Tian S, Yang F, Zeng D, Xie C (2012) Solution-processed gas sensors based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties. J Phys Chem C 116:10586–10591.  https://doi.org/10.1021/jp2123778CrossRefGoogle Scholar
  98. 98.
    Kim HJ, Lee JH (2014) Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens Actuators B 192:607–627.  https://doi.org/10.1016/j.snb.2013.11.005CrossRefGoogle Scholar
  99. 99.
    Zhu Y, Zhao Y, Ma J, Cheng X, Xie J, Xu P, Liu H, Liu H, Zhang H, Wu M, Elzatahry AA, Alghamdi A, Deng Y, Zhao D (2017) Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J Am Chem Soc 139:10365–10373.  https://doi.org/10.1021/jacs.7b04221CrossRefGoogle Scholar
  100. 100.
    Gurlo A, Barsan N, Weimar U, Ivanovskaya M, Taurino A, Siciliano P (2003) Polycrystalline well-shaped blocks of indium oxide obtained by the sol–gel method and their gas-sensing properties. Chem Mater 15:4377–4383.  https://doi.org/10.1021/cm031114nCrossRefGoogle Scholar
  101. 101.
    Wang Y, Jiang X, Xia Y (2003) A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J Am Chem Soc 125:16176–16177.  https://doi.org/10.1021/ja037743fCrossRefGoogle Scholar
  102. 102.
    Wang G, Yi Y, Huang X, Yang X, Gouma PI, Dudley M (2006) Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing. J Phys Chem B 110:23777–23782.  https://doi.org/10.1021/jp0635819CrossRefGoogle Scholar
  103. 103.
    Rai P, Yu YT (2012) Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application. Sens Actuators B 173:58–65.  https://doi.org/10.1016/j.snb.2012.05.068CrossRefGoogle Scholar
  104. 104.
    Rai P, Song HM, Kim YS, Song MK, Oh PR, Yoon JM, Yu YT (2012) Microwave assisted hydrothermal synthesis of single crystalline ZnO nanorods for gas sensor application. Mater Lett 68:90–93.  https://doi.org/10.1016/j.matlet.2011.10.029CrossRefGoogle Scholar
  105. 105.
    Hwang S, Kwon H, Chhajed S, Byon JW, Baik JM, Im J, Oh SH, Jang HW, Yoon SJ, Kim JK (2013) A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose. Analyst 138:443–450.  https://doi.org/10.1039/c2an35932dCrossRefGoogle Scholar
  106. 106.
    Cheng B, Russell J, Shi W, Zhang L, Samulski ET (2004) Large-scale, solution-phase growth of single-crystalline SnO2 nanorods. J Am Chem Soc 126:5972–5973.  https://doi.org/10.1021/ja0493244CrossRefGoogle Scholar
  107. 107.
    Li Y, Xu J, Chao J, Chen D, Ouyang S, Ye J, Shen G (2011) High-aspect-ratio single-crystalline porous In2O3 nanobelts with enhanced gas sensing properties. J Mater Chem 21:12852–12857.  https://doi.org/10.1039/c1jm11356aCrossRefGoogle Scholar
  108. 108.
    Xu Z, Duan G, Kong M, Su X, Cai W (2016) Fabrication of α-Fe2O3 porous array film and its crystallization effect on its H2S sensing properties. ChemistrySelect 1:2377–2382.  https://doi.org/10.1002/slct.201600163CrossRefGoogle Scholar
  109. 109.
    Wang S, Zhang H, Wang Y, Wang L, Gong Z (2014) Facile one-pot synthesis of Au nanoparticles decorated porous α-Fe2O3 nanorods for in situ detection of VOCs. RSC Adv 4:369–373.  https://doi.org/10.1039/c3ra44779kCrossRefGoogle Scholar
  110. 110.
    Wang B, Chen JS, Wu HB, Wang Z, Lou XW (2011) Quasiemulsion-templated formation of alpha-Fe2O3 hollow spheres with enhanced lithium storage properties. J Am Chem Soc 133:17146–17148.  https://doi.org/10.1021/ja208346sCrossRefGoogle Scholar
  111. 111.
    Sun X, Ji H, Li X, Cai S, Zheng C (2014) Open-system nanocasting synthesis of nanoscale α-Fe2O3 porous structure with enhanced acetone-sensing properties. J Alloys Compd 600:111–117.  https://doi.org/10.1016/j.jallcom.2014.02.129CrossRefGoogle Scholar
  112. 112.
    Carraro G, Barreca D, Comini E, Gasparotto A, Maccato C, Sada C, Sberveglieri G (2012) Controlled synthesis and properties of β-Fe2O3 nanosystems functionalized with Ag or Pt nanoparticles. CrystEngComm 14:6469–6476.  https://doi.org/10.1039/c2ce25956gCrossRefGoogle Scholar
  113. 113.
    Biswal RC (2011) Pure and Pt-loaded gamma iron oxide as sensor for detection of sub ppm level of acetone. Sens Actuators B 157:183–188.  https://doi.org/10.1016/j.snb.2011.03.047CrossRefGoogle Scholar
  114. 114.
    Peeters D, Barreca D, Carraro G, Comini E, Gasparotto A, Maccato C, Sada C, Sberveglieri G (2014) Au/ε-Fe2O3 nanocomposites as selective NO2 gas sensors. J Phys Chem C 118:11813–11819.  https://doi.org/10.1021/jp5032288CrossRefGoogle Scholar
  115. 115.
    Walcarius A (2015) Mesoporous materials-based electrochemical sensors. Electroanalysis 27:1303–1340.  https://doi.org/10.1002/elan.201400628CrossRefGoogle Scholar
  116. 116.
    Gurlo A (2011) Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3:154–165.  https://doi.org/10.1039/c0nr00560fCrossRefGoogle Scholar
  117. 117.
    Batzill M, Katsiev K, Burst JM, Diebold U, Chaka AM, Delley B (2005) Gas-phase-dependent properties of SnO2 (110), (100), and (101) single-crystal surfaces: structure, composition, and electronic properties. Phys Rev B 72:165414–165433.  https://doi.org/10.1103/PhysRevB.72.165414CrossRefGoogle Scholar
  118. 118.
    Han X, Jin M, Xie S, Kuang Q, Jiang Z, Jiang Y, Xie Z, Zheng L (2009) Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy 221 facets and enhanced gas-sensing properties. Angew Chem Int Ed 48:9180–9183.  https://doi.org/10.1002/anie.200903926CrossRefGoogle Scholar
  119. 119.
    Wang C, Du G, Ståhl K, Huang H, Zhong Y, Jiang JZ (2012) Ultrathin SnO2 nanosheets: oriented attachment mechanism, nonstoichiometric defects, and enhanced lithium-ion battery performances. J Phys Chem C 116:4000–4011.  https://doi.org/10.1021/jp300136pCrossRefGoogle Scholar
  120. 120.
    Zakrzewska K (2004) Gas sensing mechanism of TiO2-based thin films. Vacuum 74:335–338.  https://doi.org/10.1016/j.vacuum.2003.12.152CrossRefGoogle Scholar
  121. 121.
    Nisar J, Topalian Z, Sarkar AD, Osterlund L, Ahuja R (2013) TiO2-based gas sensor: a possible application to SO2. ACS Appl Mater Interfaces 5:8516–8522.  https://doi.org/10.1021/am4018835CrossRefGoogle Scholar
  122. 122.
    Jiménez I, Arbiol J, Dezanneau G, Cornet A, Morante JR (2003) Crystalline structure, defects and gas sensor response to NO2 and H2S of tungsten trioxide nanopowders. Sens Actuators B 93:475–485.  https://doi.org/10.1016/S0925-4005(03)00198-9CrossRefGoogle Scholar
  123. 123.
    Lupan O, Ursaki VV, Chai G, Chow L, Emelchenko GA, Tiginyanu IM, Gruzintsev AN, Redkin AN (2010) Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature. Sens Actuators B 144:56–66.  https://doi.org/10.1016/j.snb.2009.10.038CrossRefGoogle Scholar
  124. 124.
    Liu J, Huang H, Zhao H, Yan X, Wu S, Li Y, Wu M, Chen L, Yang X, Su BL (2016) Enhanced gas sensitivity and selectivity on aperture-controllable 3D interconnected macro-mesoporous ZnO nanostructures. ACS Appl Mater Interfaces 8:8583–8590.  https://doi.org/10.1021/acsami.5b12315CrossRefGoogle Scholar
  125. 125.
    Kim K, Lee HB, Johnson RW, Tanskanen JT, Liu N, Kim MG, Pang C, Ahn C, Bent SF, Bao Z (2014) Selective metal deposition at graphene line defects by atomic layer deposition. Nat Commun 5:4781–4789.  https://doi.org/10.1038/ncomms5781CrossRefGoogle Scholar
  126. 126.
    Adepalli KK, Kelsch M, Merkle R, Maier J (2013) Influence of line defects on the electrical properties of single crystal TiO2. Adv Funct Mater 23:1798–1806.  https://doi.org/10.1002/adfm.201202256CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of ChemistryFudan UniversityShanghaiChina

Personalised recommendations