Semiconducting Metal Oxides: Composition and Sensing Performance

  • Yonghui DengEmail author


The gas sensing performance of semiconducting metal oxide (SMO) is directly related to its composition for  specific  electronic structure and surface properties. Well-designed intergation of multicomposites is an effective way to improve its gas sensing performance. The combination of different metal oxides, modification of noble metal catalysts and doping of heteroatoms are three most common composition operating ways. The combination of different metal oxides can form different heterojunctions, leading to the change in electronic structure of materials, exhibiting properties that are distinct from those of a single composition of metal oxide. Precious metal modification usually catalyzes the surface chemical reaction, which in turn affects the gas sensing properties of the material. Heteroatom doping changes the gas sensing properties by affecting the overall defect of the material. Knowledge of the relationship between composition and gas sensing performance will help to design higher-performance metal oxide semiconductor gas sensors.


Metal oxides gas sensors p–n heterojunctions Noble metal modification Heteroatom doping Sensing performance 


  1. 1.
    Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sens Basel 10(3):2088–2106. Scholar
  2. 2.
    Miller DR, Akbar SA, Morris PA (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuators B Chem 204:250–272. Scholar
  3. 3.
    Rai P, Majhi SM, Yu Y, Lee J (2015) Noble metal@metal oxide semiconductor core@shell nano-architectures as a new platform for gas sensor applications. RSC Adv 5(93):76229–76248. Scholar
  4. 4.
    Woo H, Na C, Lee J (2016) Design of highly selective gas sensors via physicochemical modification of oxide nanowires: overview. Sens Basel 16(9):1531. Scholar
  5. 5.
    Luo Y, Zhang C, Zheng B, Geng X, Debliquy M (2017) Hydrogen sensors based on noble metal doped metal-oxide semiconductor: a review. Int J Hydrogen Energy 42(31):20386–20397. Scholar
  6. 6.
    Ju D, Xu H, Xu Q, Gong H, Qiu Z, Guo J, Zhang J, Cao B (2015) High triethylamine-sensing properties of NiO/SnO2 hollow sphere P–N heterojunction sensors. Sens Actuators B Chem 215:39–44. Scholar
  7. 7.
    Na CW, Woo H, Kim I, Lee J (2011) Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. Chem Commun 47(18):5148–5150. Scholar
  8. 8.
    Shao F, Hoffmann MWG, Prades JD, Zamani R, Arbiol J, Morante JR, Varechkina E, Rumyantseva M, Gaskov A, Giebelhaus I, Fischer T, Mathur S, Hernández-Ramírez F (2013) Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection. Sens Actuators B 181:130–135. Scholar
  9. 9.
    Xie Y, Xing R, Li Q, Xu L, Song H (2015) Three-dimensional ordered ZnO–CuO inverse opals toward low concentration acetone detection for exhaled breath sensing. Sens Actuators B Chem 211:255–262. Scholar
  10. 10.
    Woo HS, Na CW, Kim ID, Lee JH (2012) Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO–Cr2O3 hetero-nanostructures. Nanotechnology 23(24):245501. Scholar
  11. 11.
    Mashock M, Yu K, Cui S, Mao S, Lu G, Chen J (2012) Modulating gas sensing properties of CuO nanowires through creation of discrete nanosized p–n junctions on their surfaces. ACS Appl Mater Interfaces 4(8):4192–4199. Scholar
  12. 12.
    Jain K, Pant RP, Lakshmikumar ST (2006) Effect of Ni doping on thick film SnO2 gas sensor. Sens Actuators B Chem 113(2):823–829. Scholar
  13. 13.
    Zeng W, Liu T, Wang Z (2010) Sensitivity improvement of TiO2-doped SnO2 to volatile organic compounds. Physica E Low-dimensional Syst Nanostruct 43(2):633–638. Scholar
  14. 14.
    Sen S, Kanitkar P, Sharma A, Muthe KP, Rath A, Deshpande SK, Kaur M, Aiyer RC, Gupta SK, Yakhmi JV (2010) Growth of SnO2/W18O49 nanowire hierarchical heterostructure and their application as chemical sensor. Sens Actuators B Chem 147(2):453–460. Scholar
  15. 15.
    Suh JM, Sohn W, Shim Y, Cho J, Song YG, Kim TL, Jeon J, Kwon KC, Choi KS, Kang C, Byun H, Jang HW (2018) p–p heterojunction of nickel oxide-decorated cobalt oxide nanorods for enhanced sensitivity and selectivity toward volatile organic compounds. ACS Appl Mater Interfaces 10(1):1050–1058. Scholar
  16. 16.
    Li C, Li L, Du Z, Yu H, Xiang Y, Li Y, Cai Y, Wang T (2008) Rapid and ultrahigh ethanol sensing based on Au-coated ZnO nanorods. Nanotechnology 19(3):35501. Scholar
  17. 17.
    Yang X, Salles V, Kaneti YV, Liu M, Maillard M, Journet C, Jiang X, Brioude A (2015) Fabrication of highly sensitive gas sensor based on Au functionalized WO3 composite nanofibers by electrospinning. Sens Actuators B Chem 220:1112–1119. Scholar
  18. 18.
    Hosseini ZS, Mortezaali A, Iraji Zad A, Fardindoost S (2015) Sensitive and selective room temperature H2S gas sensor based on Au sensitized vertical ZnO nanorods with flower-like structures. J Alloy Compd 628:222–229. Scholar
  19. 19.
    Wang Y, Lin Y, Jiang D, Li F, Li C, Zhu L, Wen S, Ruan S (2015) Special nanostructure control of ethanol sensing characteristics based on Au@In2O3 sensor with good selectivity and rapid response. RSC Adv 5(13):9884–9989. Scholar
  20. 20.
    Vallejos S, Stoycheva T, Umek P, Navio C, Snyders R, Bittencourt C, Llobet E, Blackman C, Moniz S, Correig X (2011) Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices. Chem Commun 47(1):565–567. Scholar
  21. 21.
    Ramgir NS, Kaur M, Sharma PK, Datta N, Kailasaganapathi S, Bhattacharya S, Debnath AK, Aswal DK, Gupta SK (2013) Ethanol sensing properties of pure and Au modified ZnO nanowires. Sens Actuators B Chem 187:313–318. Scholar
  22. 22.
    Kaneti YV, Moriceau J, Liu M, Yuan Y, Zakaria Q, Jiang X, Yu A (2015) Hydrothermal synthesis of ternary α-Fe2O3–ZnO–Au nanocomposites with high gas-sensing performance. Sens Actuators B Chem 209:889–897. Scholar
  23. 23.
    Chung F, Wu R, Cheng F (2014) Fabrication of a Au@SnO2 core–shell structure for gaseous formaldehyde sensing at room temperature. Sens Actuators B Chem 190:1–7. Scholar
  24. 24.
    Chung F, Zhu Z, Luo P, Wu R, Li W (2014) Au@ZnO core–shell structure for gaseous formaldehyde sensing at room temperature. Sens Actuators B Chem 199:314–319. Scholar
  25. 25.
    Ramgir NS, Sharma PK, Datta N, Kaur M, Debnath AK, Aswal DK, Gupta SK (2013) Room temperature H2S sensor based on Au modified ZnO nanowires. Sens Actuators B Chem 186:718–726. Scholar
  26. 26.
    D’Arienzo M, Armelao L, Cacciamani A, Mari CM, Polizzi S, Ruffo R, Scotti R, Testino A, Wahba L, Morazzoni F (2010) One-step preparation of SnO2 and Pt-doped SnO2 as inverse opal thin films for gas sensing. Chem Mater 22(13):4083–4089. Scholar
  27. 27.
    Shin J, Choi S, Lee I, Youn D, Park CO, Lee J, Tuller HL, Kim I (2013) Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv Funct Mater 23(19):2357–2367. Scholar
  28. 28.
    Karmaoui M, Leonardi SG, Latino M, Tobaldi DM, Donato N, Pullar RC, Seabra MP, Labrincha JA, Neri G (2016) Pt-decorated In2O3 nanoparticles and their ability as a highly sensitive (<10 ppb) acetone sensor for biomedical applications. Sens Actuators B Chem 230:697–705. Scholar
  29. 29.
    Wang Y, Liu J, Cui X, Gao Y, Ma J, Sun Y, Sun P, Liu F, Liang X, Zhang T, Lu G (2017) NH3 gas sensing performance enhanced by Pt-loaded on mesoporous WO3. Sens Actuators B Chem 238:473–481. Scholar
  30. 30.
    Yu M, Wu R, Chavali M (2011) Effect of ‘Pt’ loading in ZnO–CuO hetero-junction material sensing carbon monoxide at room temperature. Sens Actuators B Chem 153(2):321–328. Scholar
  31. 31.
    Ma J, Ren Y, Zhou X, Liu L, Zhu Y, Cheng X, Xu P, Li X, Deng Y, Zhao D (2018) Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv Funct Mater 28(6):1705268. Scholar
  32. 32.
    Wang K, Zhao T, Lian G, Yu Q, Luan C, Wang Q, Cui D (2013) Room temperature CO sensor fabricated from Pt-loaded SnO2 porous nanosolid. Sens Actuators B Chem 184:33–39. Scholar
  33. 33.
    Hwang I, Choi J, Woo H, Kim S, Jung S, Seong T, Kim I, Lee J (2011) Facile control of C2H5OH sensing characteristics by decorating discrete Ag nanoclusters on SnO2 nanowire networks. ACS Appl Mater Interfaces 3(8):3140–3145. Scholar
  34. 34.
    Mirzaei A, Janghorban K, Hashemi B, Bonavita A, Bonyani M, Leonardi S, Neri G (2015) Synthesis, characterization and gas sensing properties of Ag@α-Fe2O3 core-shell nanocomposites. Nanomater Basel 5(2):737–749. Scholar
  35. 35.
    Wang Y, Cui X, Yang Q, Liu J, Gao Y, Sun P, Lu G (2016) Preparation of Ag-loaded mesoporous WO3 and its enhanced NO2 sensing performance. Sens Actuators B Chem 225:544–552. Scholar
  36. 36.
    Zhu G, Liu Y, Xu H, Chen Y, Shen X, Xu Z (2012) Photochemical deposition of Ag nanocrystals on hierarchical ZnO microspheres and their enhanced gas-sensing properties. CrystEngComm 14(2):719–725. Scholar
  37. 37.
    Kolmakov A, Klenov DO, Lilach Y, Stemmer S, Moskovits M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5(4):667–673. Scholar
  38. 38.
    Adams BD, Ostrom CK, Chen S, Chen A (2010) High-performance Pd-based hydrogen spillover catalysts for hydrogen storage. J Phys Chem C 114(46):19875–19882. Scholar
  39. 39.
    Lou Z, Deng J, Wang L, Wang L, Fei T, Zhang T (2013) Toluene and ethanol sensing performances of pristine and PdO-decorated flower-like ZnO structures. Sens Actuators B Chem 176:323–329. Scholar
  40. 40.
    Kim S, Park S, Park S, Lee C (2015) Acetone sensing of Au and Pd-decorated WO3 nanorod sensors. Sens Actuators B Chem 209:180–185. Scholar
  41. 41.
    Tian S, Ding X, Zeng D, Wu J, Zhang S, Xie C (2013) A low temperature gas sensor based on Pd-functionalized mesoporous SnO2 fibers for detecting trace formaldehyde. RSC Adv 3(29):11823. Scholar
  42. 42.
    Hong YJ, Yoon J, Lee J, Kang YC (2014) One-pot synthesis of Pd-loaded SnO2 yolk-shell nanostructures for ultraselective methyl benzene sensors. Chem Eur J 20(10):2737–2741. Scholar
  43. 43.
    Li W, Shen C, Wu G, Ma Y, Gao Z, Xia X, Du G (2011) New model for a Pd-doped SnO2-based CO gas sensor and catalyst studied by online in-situ X-ray photoelectron spectroscopy. J Phys Chem C 115(43):21258–21263. Scholar
  44. 44.
    Moon J, Park J, Lee S, Zyung T, Kim I (2010) Pd-doped TiO2 nanofiber networks for gas sensor applications. Sens Actuators B Chem 149(1):301–305. Scholar
  45. 45.
    Kim JC, Jun HK, Huh J, Lee DD (1997) Tin oxide-based methane gas sensor promoted by alumina-supported Pd catalyst. Sens Actuators B Chem 45(3):271–277. Scholar
  46. 46.
    Wang Z, Li Z, Jiang T, Xu X, Wang C (2013) Ultrasensitive hydrogen sensor based on Pd0-loaded SnO2 electrospun nanofibers at room temperature. ACS Appl Mater Interfaces 5(6):2013–2021. Scholar
  47. 47.
    Liu B, Cai D, Liu Y, Li H, Weng C, Zeng G, Li Q, Wang T (2013) High-performance room-temperature hydrogen sensors based on combined effects of Pd decoration and Schottky barriers. Nanoscale 5(6):2505. Scholar
  48. 48.
    Kim S, Hwang I, Na CW, Kim I, Kang YC, Lee J (2011) Ultrasensitive and selective C2H5OH sensors using Rh-loaded In2O3 hollow spheres. J Mater Chem 21(46):18560–18567. Scholar
  49. 49.
    Kandoi S, Gokhale AA, Grabow LC, Dumesic JA, Mavrikakis M (2004) Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature. Catal Lett 93(1/2):93–100. Scholar
  50. 50.
    Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) CO oxidation over supported gold catalysts—“Inert” and “Active” support materials and their role for the oxygen supply during reaction. J Catal 197(1):113–122. Scholar
  51. 51.
    Tien LC, Sadik PW, Norton DP, Voss LF, Pearton SJ, Wang HT, Kang BS, Ren F, Jun J, Lin J (2005) Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods. Appl Phys Lett 87(22):222106. Scholar
  52. 52.
    Li F, Guo S, Shen J, Shen L, Sun D, Wang B, Chen Y, Ruan S (2017) Xylene gas sensor based on Au-loaded WO3·H2O nanocubes with enhanced sensing performance. Sens Actuators B Chem 238:364–373. Scholar
  53. 53.
    Kim S, Choi S, Jang J, Kim N, Hakim M, Tuller HL, Kim I (2016) Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath. ACS Nano 10(6):5891–5899. Scholar
  54. 54.
    Koo W, Choi S, Kim S, Jang J, Tuller HL, Kim I (2016) Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors. J Am Chem Soc 138(40):13431–13437. Scholar
  55. 55.
    Choi S, Kim S, Cho H, Jang J, Lin Y, Tuller HL, Rutledge GC, Kim I (2016) WO3 nanofiber-based biomarker detectors enabled by protein-encapsulated catalyst self-assembled on polystyrene colloid templates. Small 12(7):911–920. Scholar
  56. 56.
    Liu B, Cai D, Liu Y, Wang D, Wang L, Wang Y, Li H, Li Q, Wang T (2014) Improved room-temperature hydrogen sensing performance of directly formed Pd/WO3 nanocomposite. Sens Actuators B Chem 193:28–34. Scholar
  57. 57.
    Tricoli A, Graf M, Pratsinis SE (2008) Optimal doping for enhanced SnO2 sensitivity and thermal stability. Adv Funct Mater 18(13):1969–1976. Scholar
  58. 58.
    Righettoni M, Tricoli A, Gass S, Schmid A, Amann A, Pratsinis SE (2012) Breath acetone monitoring by portable Si:WO3 gas sensors. Anal Chim Acta 738:69–75. Scholar
  59. 59.
    Righettoni M, Tricoli A, Pratsinis SE (2010) Si:WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal Chem 82(9):3581–3587. Scholar
  60. 60.
    Righettoni M, Tricoli A, Pratsinis SE (2010) Thermally stable, silica-doped ε-WO3 for sensing of acetone in the human breath. Chem Mater 22(10):3152–3157. Scholar
  61. 61.
    Xiao T, Wang X, Zhao Z, Li L, Zhang L, Yao H, Wang J, Li Z (2014) Highly sensitive and selective acetone sensor based on C-doped WO3 for potential diagnosis of diabetes mellitus. Sens Actuators B Chem 199:210–219. Scholar
  62. 62.
    Zhang Y, Yang Q, Yang X, Deng Y (2018) One-step synthesis of in-situ N-doped ordered mesoporous titania for enhanced gas sensing performance. Micropor Mesopor Mat 270:75–81. Scholar
  63. 63.
    Woo H, Kwak C, Kim I, Lee J (2014) Selective, sensitive, and reversible detection of H2S using Mo-doped ZnO nanowire network sensors. J Mater Chem A 2(18):6412–6418. Scholar
  64. 64.
    Zhao J, Yang T, Liu Y, Wang Z, Li X, Sun Y, Du Y, Li Y, Lu G (2014) Enhancement of NO2 gas sensing response based on ordered mesoporous Fe-doped In2O3. Sens Actuators B Chem 191:806–812. Scholar
  65. 65.
    Galatsis K, Cukrov L, Wlodarski W, McCormick P, Kalantar-zadeh K, Comini E, Sberveglieri G (2003) p- and n-type Fe-doped SnO2 gas sensors fabricated by the mechanochemical processing technique. Sens Actuators B Chem 93(1–3):562–565. Scholar
  66. 66.
    Yu A, Qian J, Pan H, Cui Y, Xu M, Tu L, Chai Q, Zhou X (2011) Micro-lotus constructed by Fe-doped ZnO hierarchically porous nanosheets: preparation, characterization and gas sensing property. Sens Actuators B Chem 158(1):9–16. Scholar
  67. 67.
    Yoon J, Kim H, Kim I, Lee J (2013) Electronic sensitization of the response to C2H5OH of p-type NiO nanofibers by Fe doping. Nanotechnology 24(44):444005CrossRefGoogle Scholar
  68. 68.
    Al-Hardan N, Abdullah MJ, Aziz AA (2011) Impedance spectroscopy of undoped and Cr-doped ZnO gas sensors under different oxygen concentrations. Appl Surf Sci 257(21):8993–8997. Scholar
  69. 69.
    Kim H, Yoon J, Choi K, Jang HW, Umar A, Lee J (2013) Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures. Nanoscale 5(15):7066. Scholar
  70. 70.
    Ruiz AM, Sakai G, Cornet A, Shimanoe K, Morante JR, Yamazoe N (2003) Cr-doped TiO2 gas sensor for exhaust NO2 monitoring. Sens Actuators B Chem 93(1–3):509–518. Scholar
  71. 71.
    Wang Y, Liu B, Xiao S, Wang X, Sun L, Li H, Xie W, Li Q, Zhang Q, Wang T (2016) Low-temperature H2S detection with hierarchical Cr-doped WO3 microspheres. ACS Appl Mater Interfaces 8(15):9674–9683. Scholar
  72. 72.
    Kumar V, Sen S, Muthe KP, Gaur NK, Gupta SK, Yakhmi JV (2009) Copper doped SnO2 nanowires as highly sensitive H2S gas sensor. Sens Actuators B Chem 138(2):587–590. Scholar
  73. 73.
    Teleki A, Bjelobrk N, Pratsinis S (2008) Flame-made Nb- and Cu-doped TiO2 sensors for CO and ethanol. Sens Actuators B Chem 130(1):449–457. Scholar
  74. 74.
    Gong H, Hu JQ, Wang JH, Ong CH, Zhu FR (2006) Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sens Actuators B Chem 115(1):247–251. Scholar
  75. 75.
    Parthibavarman M, Renganathan B, Sastikumar D (2013) Development of high sensitivity ethanol gas sensor based on Co-doped SnO2 nanoparticles by microwave irradiation technique. Curr Appl Phys 13(7):1537–1544. Scholar
  76. 76.
    Jing Z, Wu S (2006) Synthesis, characterization and gas sensing properties of undoped and Co-doped γ-Fe2O3-based gas sensors. Mater Lett 60(7):952–956. Scholar
  77. 77.
    Liu L, Li S, Zhuang J, Wang L, Zhang J, Li H, Liu Z, Han Y, Jiang X, Zhang P (2011) Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning. Sens Actuators B Chem 155(2):782–788. Scholar
  78. 78.
    Zheng K, Gu L, Sun D, Mo X, Chen G (2010) The properties of ethanol gas sensor based on Ti doped ZnO nanotetrapods. Mater Sci Eng B 166(1):104–107. Scholar
  79. 79.
    Guo P, Pan H (2006) Selectivity of Ti-doped In2O3 ceramics as an ammonia sensor. Sens Actuators B Chem 114(2):762–767. Scholar
  80. 80.
    Song XC, Yang E, Liu G, Zhang Y, Liu ZS, Chen HF, Wang Y (2010) Preparation and photocatalytic activity of Mo-doped WO3 nanowires. J Nanopart Res 12(8):2813–2819. Scholar
  81. 81.
    Mai LQ, Hu B, Hu T, Chen W, Gu ED (2006) Electrical property of Mo-doped VO2 nanowire array film by melting—quenching sol–gel method. J Phys Chem B 110(39):19083–19086. Scholar
  82. 82.
    Feng C, Wang C, Cheng P, Li X, Wang B, Guan Y, Ma J, Zhang H, Sun Y, Sun P, Zheng J, Lu G (2015) Facile synthesis and gas sensing properties of La2O3–WO3 nanofibers. Sens Actuators B Chem 221:434–442. Scholar
  83. 83.
    Mohanapriya P, Segawa H, Watanabe K, Watanabe K, Samitsu S, Natarajan TS, Jaya NV, Ohashi N (2013) Enhanced ethanol-gas sensing performance of Ce-doped SnO2 hollow nanofibers prepared by electrospinning. Sens Actuators B Chem 188:872–878. Scholar
  84. 84.
    Wei D, Huang Z, Wang L, Chuai X, Zhang S, Lu G (2018) Hydrothermal synthesis of Ce-doped hierarchical flower-like In2O3 microspheres and their excellent gas-sensing properties. Sens Actuators B Chem 255:1211–1219. Scholar
  85. 85.
    Li Z, Wang W, Zhao Z, Liu X, Song P (2017) One-step hydrothermal preparation of Ce-doped MoO3 nanobelts with enhanced gas sensing properties. RSC Adv 7(45):28366–28372. Scholar
  86. 86.
    Han D, Song P, Zhang S, Zhang H, Xu Q, Wang Q (2015) Enhanced methanol gas-sensing performance of Ce-doped In2O3 porous nanospheres prepared by hydrothermal method. Sens Actuators B Chem 216:488–496. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of ChemistryFudan UniversityShanghaiChina

Personalised recommendations