Advertisement

Semiconducting Metal Oxides: Composition and Sensing Performance

  • Yonghui DengEmail author
Chapter

Abstract

The gas sensing performance of semiconducting metal oxide (SMO) is directly related to its composition for  specific  electronic structure and surface properties. Well-designed intergation of multicomposites is an effective way to improve its gas sensing performance. The combination of different metal oxides, modification of noble metal catalysts and doping of heteroatoms are three most common composition operating ways. The combination of different metal oxides can form different heterojunctions, leading to the change in electronic structure of materials, exhibiting properties that are distinct from those of a single composition of metal oxide. Precious metal modification usually catalyzes the surface chemical reaction, which in turn affects the gas sensing properties of the material. Heteroatom doping changes the gas sensing properties by affecting the overall defect of the material. Knowledge of the relationship between composition and gas sensing performance will help to design higher-performance metal oxide semiconductor gas sensors.

Keywords

Metal oxides gas sensors p–n heterojunctions Noble metal modification Heteroatom doping Sensing performance 

References

  1. 1.
    Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sens Basel 10(3):2088–2106.  https://doi.org/10.3390/s100302088CrossRefGoogle Scholar
  2. 2.
    Miller DR, Akbar SA, Morris PA (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuators B Chem 204:250–272.  https://doi.org/10.1016/j.snb.2014.07.074CrossRefGoogle Scholar
  3. 3.
    Rai P, Majhi SM, Yu Y, Lee J (2015) Noble metal@metal oxide semiconductor core@shell nano-architectures as a new platform for gas sensor applications. RSC Adv 5(93):76229–76248.  https://doi.org/10.1039/c5ra14322eCrossRefGoogle Scholar
  4. 4.
    Woo H, Na C, Lee J (2016) Design of highly selective gas sensors via physicochemical modification of oxide nanowires: overview. Sens Basel 16(9):1531.  https://doi.org/10.3390/s16091531CrossRefGoogle Scholar
  5. 5.
    Luo Y, Zhang C, Zheng B, Geng X, Debliquy M (2017) Hydrogen sensors based on noble metal doped metal-oxide semiconductor: a review. Int J Hydrogen Energy 42(31):20386–20397.  https://doi.org/10.1016/j.ijhydene.2017.06.066CrossRefGoogle Scholar
  6. 6.
    Ju D, Xu H, Xu Q, Gong H, Qiu Z, Guo J, Zhang J, Cao B (2015) High triethylamine-sensing properties of NiO/SnO2 hollow sphere P–N heterojunction sensors. Sens Actuators B Chem 215:39–44.  https://doi.org/10.1016/j.snb.2015.03.015CrossRefGoogle Scholar
  7. 7.
    Na CW, Woo H, Kim I, Lee J (2011) Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. Chem Commun 47(18):5148–5150.  https://doi.org/10.1039/c0cc05256fCrossRefGoogle Scholar
  8. 8.
    Shao F, Hoffmann MWG, Prades JD, Zamani R, Arbiol J, Morante JR, Varechkina E, Rumyantseva M, Gaskov A, Giebelhaus I, Fischer T, Mathur S, Hernández-Ramírez F (2013) Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection. Sens Actuators B 181:130–135.  https://doi.org/10.1016/j.snb.2013.01.067CrossRefGoogle Scholar
  9. 9.
    Xie Y, Xing R, Li Q, Xu L, Song H (2015) Three-dimensional ordered ZnO–CuO inverse opals toward low concentration acetone detection for exhaled breath sensing. Sens Actuators B Chem 211:255–262.  https://doi.org/10.1016/j.snb.2015.01.086CrossRefGoogle Scholar
  10. 10.
    Woo HS, Na CW, Kim ID, Lee JH (2012) Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO–Cr2O3 hetero-nanostructures. Nanotechnology 23(24):245501.  https://doi.org/10.1088/0957-4484/23/24/245501CrossRefGoogle Scholar
  11. 11.
    Mashock M, Yu K, Cui S, Mao S, Lu G, Chen J (2012) Modulating gas sensing properties of CuO nanowires through creation of discrete nanosized p–n junctions on their surfaces. ACS Appl Mater Interfaces 4(8):4192–4199.  https://doi.org/10.1021/am300911zCrossRefGoogle Scholar
  12. 12.
    Jain K, Pant RP, Lakshmikumar ST (2006) Effect of Ni doping on thick film SnO2 gas sensor. Sens Actuators B Chem 113(2):823–829.  https://doi.org/10.1016/j.snb.2005.03.104CrossRefGoogle Scholar
  13. 13.
    Zeng W, Liu T, Wang Z (2010) Sensitivity improvement of TiO2-doped SnO2 to volatile organic compounds. Physica E Low-dimensional Syst Nanostruct 43(2):633–638.  https://doi.org/10.1016/j.physe.2010.10.010CrossRefGoogle Scholar
  14. 14.
    Sen S, Kanitkar P, Sharma A, Muthe KP, Rath A, Deshpande SK, Kaur M, Aiyer RC, Gupta SK, Yakhmi JV (2010) Growth of SnO2/W18O49 nanowire hierarchical heterostructure and their application as chemical sensor. Sens Actuators B Chem 147(2):453–460.  https://doi.org/10.1016/j.snb.2010.04.016CrossRefGoogle Scholar
  15. 15.
    Suh JM, Sohn W, Shim Y, Cho J, Song YG, Kim TL, Jeon J, Kwon KC, Choi KS, Kang C, Byun H, Jang HW (2018) p–p heterojunction of nickel oxide-decorated cobalt oxide nanorods for enhanced sensitivity and selectivity toward volatile organic compounds. ACS Appl Mater Interfaces 10(1):1050–1058.  https://doi.org/10.1021/acsami.7b14545CrossRefGoogle Scholar
  16. 16.
    Li C, Li L, Du Z, Yu H, Xiang Y, Li Y, Cai Y, Wang T (2008) Rapid and ultrahigh ethanol sensing based on Au-coated ZnO nanorods. Nanotechnology 19(3):35501.  https://doi.org/10.1088/0957-4484/19/03/035501CrossRefGoogle Scholar
  17. 17.
    Yang X, Salles V, Kaneti YV, Liu M, Maillard M, Journet C, Jiang X, Brioude A (2015) Fabrication of highly sensitive gas sensor based on Au functionalized WO3 composite nanofibers by electrospinning. Sens Actuators B Chem 220:1112–1119.  https://doi.org/10.1016/j.snb.2015.05.121CrossRefGoogle Scholar
  18. 18.
    Hosseini ZS, Mortezaali A, Iraji Zad A, Fardindoost S (2015) Sensitive and selective room temperature H2S gas sensor based on Au sensitized vertical ZnO nanorods with flower-like structures. J Alloy Compd 628:222–229.  https://doi.org/10.1016/j.jallcom.2014.12.163CrossRefGoogle Scholar
  19. 19.
    Wang Y, Lin Y, Jiang D, Li F, Li C, Zhu L, Wen S, Ruan S (2015) Special nanostructure control of ethanol sensing characteristics based on Au@In2O3 sensor with good selectivity and rapid response. RSC Adv 5(13):9884–9989.  https://doi.org/10.1039/c4ra14879gCrossRefGoogle Scholar
  20. 20.
    Vallejos S, Stoycheva T, Umek P, Navio C, Snyders R, Bittencourt C, Llobet E, Blackman C, Moniz S, Correig X (2011) Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices. Chem Commun 47(1):565–567.  https://doi.org/10.1039/C0CC02398ACrossRefGoogle Scholar
  21. 21.
    Ramgir NS, Kaur M, Sharma PK, Datta N, Kailasaganapathi S, Bhattacharya S, Debnath AK, Aswal DK, Gupta SK (2013) Ethanol sensing properties of pure and Au modified ZnO nanowires. Sens Actuators B Chem 187:313–318.  https://doi.org/10.1016/j.snb.2012.11.079CrossRefGoogle Scholar
  22. 22.
    Kaneti YV, Moriceau J, Liu M, Yuan Y, Zakaria Q, Jiang X, Yu A (2015) Hydrothermal synthesis of ternary α-Fe2O3–ZnO–Au nanocomposites with high gas-sensing performance. Sens Actuators B Chem 209:889–897.  https://doi.org/10.1016/j.snb.2014.12.065CrossRefGoogle Scholar
  23. 23.
    Chung F, Wu R, Cheng F (2014) Fabrication of a Au@SnO2 core–shell structure for gaseous formaldehyde sensing at room temperature. Sens Actuators B Chem 190:1–7.  https://doi.org/10.1016/j.snb.2013.08.037CrossRefGoogle Scholar
  24. 24.
    Chung F, Zhu Z, Luo P, Wu R, Li W (2014) Au@ZnO core–shell structure for gaseous formaldehyde sensing at room temperature. Sens Actuators B Chem 199:314–319.  https://doi.org/10.1016/j.snb.2014.04.004CrossRefGoogle Scholar
  25. 25.
    Ramgir NS, Sharma PK, Datta N, Kaur M, Debnath AK, Aswal DK, Gupta SK (2013) Room temperature H2S sensor based on Au modified ZnO nanowires. Sens Actuators B Chem 186:718–726.  https://doi.org/10.1016/j.snb.2013.06.070CrossRefGoogle Scholar
  26. 26.
    D’Arienzo M, Armelao L, Cacciamani A, Mari CM, Polizzi S, Ruffo R, Scotti R, Testino A, Wahba L, Morazzoni F (2010) One-step preparation of SnO2 and Pt-doped SnO2 as inverse opal thin films for gas sensing. Chem Mater 22(13):4083–4089.  https://doi.org/10.1021/cm100866gCrossRefGoogle Scholar
  27. 27.
    Shin J, Choi S, Lee I, Youn D, Park CO, Lee J, Tuller HL, Kim I (2013) Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv Funct Mater 23(19):2357–2367.  https://doi.org/10.1002/adfm.201202729CrossRefGoogle Scholar
  28. 28.
    Karmaoui M, Leonardi SG, Latino M, Tobaldi DM, Donato N, Pullar RC, Seabra MP, Labrincha JA, Neri G (2016) Pt-decorated In2O3 nanoparticles and their ability as a highly sensitive (<10 ppb) acetone sensor for biomedical applications. Sens Actuators B Chem 230:697–705.  https://doi.org/10.1016/j.snb.2016.02.100CrossRefGoogle Scholar
  29. 29.
    Wang Y, Liu J, Cui X, Gao Y, Ma J, Sun Y, Sun P, Liu F, Liang X, Zhang T, Lu G (2017) NH3 gas sensing performance enhanced by Pt-loaded on mesoporous WO3. Sens Actuators B Chem 238:473–481.  https://doi.org/10.1016/j.snb.2016.07.085CrossRefGoogle Scholar
  30. 30.
    Yu M, Wu R, Chavali M (2011) Effect of ‘Pt’ loading in ZnO–CuO hetero-junction material sensing carbon monoxide at room temperature. Sens Actuators B Chem 153(2):321–328.  https://doi.org/10.1016/j.snb.2010.09.071CrossRefGoogle Scholar
  31. 31.
    Ma J, Ren Y, Zhou X, Liu L, Zhu Y, Cheng X, Xu P, Li X, Deng Y, Zhao D (2018) Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv Funct Mater 28(6):1705268.  https://doi.org/10.1002/adfm.201705268CrossRefGoogle Scholar
  32. 32.
    Wang K, Zhao T, Lian G, Yu Q, Luan C, Wang Q, Cui D (2013) Room temperature CO sensor fabricated from Pt-loaded SnO2 porous nanosolid. Sens Actuators B Chem 184:33–39.  https://doi.org/10.1016/j.snb.2013.04.054CrossRefGoogle Scholar
  33. 33.
    Hwang I, Choi J, Woo H, Kim S, Jung S, Seong T, Kim I, Lee J (2011) Facile control of C2H5OH sensing characteristics by decorating discrete Ag nanoclusters on SnO2 nanowire networks. ACS Appl Mater Interfaces 3(8):3140–3145.  https://doi.org/10.1021/am200647fCrossRefGoogle Scholar
  34. 34.
    Mirzaei A, Janghorban K, Hashemi B, Bonavita A, Bonyani M, Leonardi S, Neri G (2015) Synthesis, characterization and gas sensing properties of Ag@α-Fe2O3 core-shell nanocomposites. Nanomater Basel 5(2):737–749.  https://doi.org/10.3390/nano5020737CrossRefGoogle Scholar
  35. 35.
    Wang Y, Cui X, Yang Q, Liu J, Gao Y, Sun P, Lu G (2016) Preparation of Ag-loaded mesoporous WO3 and its enhanced NO2 sensing performance. Sens Actuators B Chem 225:544–552.  https://doi.org/10.1016/j.snb.2015.11.065CrossRefGoogle Scholar
  36. 36.
    Zhu G, Liu Y, Xu H, Chen Y, Shen X, Xu Z (2012) Photochemical deposition of Ag nanocrystals on hierarchical ZnO microspheres and their enhanced gas-sensing properties. CrystEngComm 14(2):719–725.  https://doi.org/10.1039/C1CE06041DCrossRefGoogle Scholar
  37. 37.
    Kolmakov A, Klenov DO, Lilach Y, Stemmer S, Moskovits M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5(4):667–673.  https://doi.org/10.1021/nl050082vCrossRefGoogle Scholar
  38. 38.
    Adams BD, Ostrom CK, Chen S, Chen A (2010) High-performance Pd-based hydrogen spillover catalysts for hydrogen storage. J Phys Chem C 114(46):19875–19882.  https://doi.org/10.1021/jp1085312CrossRefGoogle Scholar
  39. 39.
    Lou Z, Deng J, Wang L, Wang L, Fei T, Zhang T (2013) Toluene and ethanol sensing performances of pristine and PdO-decorated flower-like ZnO structures. Sens Actuators B Chem 176:323–329.  https://doi.org/10.1016/j.snb.2012.09.027CrossRefGoogle Scholar
  40. 40.
    Kim S, Park S, Park S, Lee C (2015) Acetone sensing of Au and Pd-decorated WO3 nanorod sensors. Sens Actuators B Chem 209:180–185.  https://doi.org/10.1016/j.snb.2014.11.106CrossRefGoogle Scholar
  41. 41.
    Tian S, Ding X, Zeng D, Wu J, Zhang S, Xie C (2013) A low temperature gas sensor based on Pd-functionalized mesoporous SnO2 fibers for detecting trace formaldehyde. RSC Adv 3(29):11823.  https://doi.org/10.1039/c3ra40567bCrossRefGoogle Scholar
  42. 42.
    Hong YJ, Yoon J, Lee J, Kang YC (2014) One-pot synthesis of Pd-loaded SnO2 yolk-shell nanostructures for ultraselective methyl benzene sensors. Chem Eur J 20(10):2737–2741.  https://doi.org/10.1002/chem.201304502CrossRefGoogle Scholar
  43. 43.
    Li W, Shen C, Wu G, Ma Y, Gao Z, Xia X, Du G (2011) New model for a Pd-doped SnO2-based CO gas sensor and catalyst studied by online in-situ X-ray photoelectron spectroscopy. J Phys Chem C 115(43):21258–21263.  https://doi.org/10.1021/jp2068733CrossRefGoogle Scholar
  44. 44.
    Moon J, Park J, Lee S, Zyung T, Kim I (2010) Pd-doped TiO2 nanofiber networks for gas sensor applications. Sens Actuators B Chem 149(1):301–305.  https://doi.org/10.1016/j.snb.2010.06.033CrossRefGoogle Scholar
  45. 45.
    Kim JC, Jun HK, Huh J, Lee DD (1997) Tin oxide-based methane gas sensor promoted by alumina-supported Pd catalyst. Sens Actuators B Chem 45(3):271–277.  https://doi.org/10.1016/S0925-4005(97)00325-0CrossRefGoogle Scholar
  46. 46.
    Wang Z, Li Z, Jiang T, Xu X, Wang C (2013) Ultrasensitive hydrogen sensor based on Pd0-loaded SnO2 electrospun nanofibers at room temperature. ACS Appl Mater Interfaces 5(6):2013–2021.  https://doi.org/10.1021/am3028553CrossRefGoogle Scholar
  47. 47.
    Liu B, Cai D, Liu Y, Li H, Weng C, Zeng G, Li Q, Wang T (2013) High-performance room-temperature hydrogen sensors based on combined effects of Pd decoration and Schottky barriers. Nanoscale 5(6):2505.  https://doi.org/10.1039/c3nr33872jCrossRefGoogle Scholar
  48. 48.
    Kim S, Hwang I, Na CW, Kim I, Kang YC, Lee J (2011) Ultrasensitive and selective C2H5OH sensors using Rh-loaded In2O3 hollow spheres. J Mater Chem 21(46):18560–18567.  https://doi.org/10.1039/c1jm14252fCrossRefGoogle Scholar
  49. 49.
    Kandoi S, Gokhale AA, Grabow LC, Dumesic JA, Mavrikakis M (2004) Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature. Catal Lett 93(1/2):93–100.  https://doi.org/10.1023/b:catl.0000016955.66476.44CrossRefGoogle Scholar
  50. 50.
    Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) CO oxidation over supported gold catalysts—“Inert” and “Active” support materials and their role for the oxygen supply during reaction. J Catal 197(1):113–122.  https://doi.org/10.1006/jcat.2000.3069CrossRefGoogle Scholar
  51. 51.
    Tien LC, Sadik PW, Norton DP, Voss LF, Pearton SJ, Wang HT, Kang BS, Ren F, Jun J, Lin J (2005) Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods. Appl Phys Lett 87(22):222106.  https://doi.org/10.1063/1.2136070CrossRefGoogle Scholar
  52. 52.
    Li F, Guo S, Shen J, Shen L, Sun D, Wang B, Chen Y, Ruan S (2017) Xylene gas sensor based on Au-loaded WO3·H2O nanocubes with enhanced sensing performance. Sens Actuators B Chem 238:364–373.  https://doi.org/10.1016/j.snb.2016.07.021CrossRefGoogle Scholar
  53. 53.
    Kim S, Choi S, Jang J, Kim N, Hakim M, Tuller HL, Kim I (2016) Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath. ACS Nano 10(6):5891–5899.  https://doi.org/10.1021/acsnano.6b01196CrossRefGoogle Scholar
  54. 54.
    Koo W, Choi S, Kim S, Jang J, Tuller HL, Kim I (2016) Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors. J Am Chem Soc 138(40):13431–13437.  https://doi.org/10.1021/jacs.6b09167CrossRefGoogle Scholar
  55. 55.
    Choi S, Kim S, Cho H, Jang J, Lin Y, Tuller HL, Rutledge GC, Kim I (2016) WO3 nanofiber-based biomarker detectors enabled by protein-encapsulated catalyst self-assembled on polystyrene colloid templates. Small 12(7):911–920.  https://doi.org/10.1002/smll.201502905CrossRefGoogle Scholar
  56. 56.
    Liu B, Cai D, Liu Y, Wang D, Wang L, Wang Y, Li H, Li Q, Wang T (2014) Improved room-temperature hydrogen sensing performance of directly formed Pd/WO3 nanocomposite. Sens Actuators B Chem 193:28–34.  https://doi.org/10.1016/j.snb.2013.11.057CrossRefGoogle Scholar
  57. 57.
    Tricoli A, Graf M, Pratsinis SE (2008) Optimal doping for enhanced SnO2 sensitivity and thermal stability. Adv Funct Mater 18(13):1969–1976.  https://doi.org/10.1002/adfm.200700784CrossRefGoogle Scholar
  58. 58.
    Righettoni M, Tricoli A, Gass S, Schmid A, Amann A, Pratsinis SE (2012) Breath acetone monitoring by portable Si:WO3 gas sensors. Anal Chim Acta 738:69–75.  https://doi.org/10.1016/j.aca.2012.06.002CrossRefGoogle Scholar
  59. 59.
    Righettoni M, Tricoli A, Pratsinis SE (2010) Si:WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal Chem 82(9):3581–3587.  https://doi.org/10.1021/ac902695nCrossRefGoogle Scholar
  60. 60.
    Righettoni M, Tricoli A, Pratsinis SE (2010) Thermally stable, silica-doped ε-WO3 for sensing of acetone in the human breath. Chem Mater 22(10):3152–3157.  https://doi.org/10.1021/cm1001576CrossRefGoogle Scholar
  61. 61.
    Xiao T, Wang X, Zhao Z, Li L, Zhang L, Yao H, Wang J, Li Z (2014) Highly sensitive and selective acetone sensor based on C-doped WO3 for potential diagnosis of diabetes mellitus. Sens Actuators B Chem 199:210–219.  https://doi.org/10.1016/j.snb.2014.04.015CrossRefGoogle Scholar
  62. 62.
    Zhang Y, Yang Q, Yang X, Deng Y (2018) One-step synthesis of in-situ N-doped ordered mesoporous titania for enhanced gas sensing performance. Micropor Mesopor Mat 270:75–81.  https://doi.org/10.1016/j.micromeso.2018.04.008CrossRefGoogle Scholar
  63. 63.
    Woo H, Kwak C, Kim I, Lee J (2014) Selective, sensitive, and reversible detection of H2S using Mo-doped ZnO nanowire network sensors. J Mater Chem A 2(18):6412–6418.  https://doi.org/10.1039/c4ta00387jCrossRefGoogle Scholar
  64. 64.
    Zhao J, Yang T, Liu Y, Wang Z, Li X, Sun Y, Du Y, Li Y, Lu G (2014) Enhancement of NO2 gas sensing response based on ordered mesoporous Fe-doped In2O3. Sens Actuators B Chem 191:806–812.  https://doi.org/10.1016/j.snb.2013.09.118CrossRefGoogle Scholar
  65. 65.
    Galatsis K, Cukrov L, Wlodarski W, McCormick P, Kalantar-zadeh K, Comini E, Sberveglieri G (2003) p- and n-type Fe-doped SnO2 gas sensors fabricated by the mechanochemical processing technique. Sens Actuators B Chem 93(1–3):562–565.  https://doi.org/10.1016/S0925-4005(03)00233-8CrossRefGoogle Scholar
  66. 66.
    Yu A, Qian J, Pan H, Cui Y, Xu M, Tu L, Chai Q, Zhou X (2011) Micro-lotus constructed by Fe-doped ZnO hierarchically porous nanosheets: preparation, characterization and gas sensing property. Sens Actuators B Chem 158(1):9–16.  https://doi.org/10.1016/j.snb.2011.03.052CrossRefGoogle Scholar
  67. 67.
    Yoon J, Kim H, Kim I, Lee J (2013) Electronic sensitization of the response to C2H5OH of p-type NiO nanofibers by Fe doping. Nanotechnology 24(44):444005CrossRefGoogle Scholar
  68. 68.
    Al-Hardan N, Abdullah MJ, Aziz AA (2011) Impedance spectroscopy of undoped and Cr-doped ZnO gas sensors under different oxygen concentrations. Appl Surf Sci 257(21):8993–8997.  https://doi.org/10.1016/j.apsusc.2011.05.078CrossRefGoogle Scholar
  69. 69.
    Kim H, Yoon J, Choi K, Jang HW, Umar A, Lee J (2013) Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures. Nanoscale 5(15):7066.  https://doi.org/10.1039/c3nr01281fCrossRefGoogle Scholar
  70. 70.
    Ruiz AM, Sakai G, Cornet A, Shimanoe K, Morante JR, Yamazoe N (2003) Cr-doped TiO2 gas sensor for exhaust NO2 monitoring. Sens Actuators B Chem 93(1–3):509–518.  https://doi.org/10.1016/S0925-4005(03)00183-7CrossRefGoogle Scholar
  71. 71.
    Wang Y, Liu B, Xiao S, Wang X, Sun L, Li H, Xie W, Li Q, Zhang Q, Wang T (2016) Low-temperature H2S detection with hierarchical Cr-doped WO3 microspheres. ACS Appl Mater Interfaces 8(15):9674–9683.  https://doi.org/10.1021/acsami.5b12857CrossRefGoogle Scholar
  72. 72.
    Kumar V, Sen S, Muthe KP, Gaur NK, Gupta SK, Yakhmi JV (2009) Copper doped SnO2 nanowires as highly sensitive H2S gas sensor. Sens Actuators B Chem 138(2):587–590.  https://doi.org/10.1016/j.snb.2009.02.053CrossRefGoogle Scholar
  73. 73.
    Teleki A, Bjelobrk N, Pratsinis S (2008) Flame-made Nb- and Cu-doped TiO2 sensors for CO and ethanol. Sens Actuators B Chem 130(1):449–457.  https://doi.org/10.1016/j.snb.2007.09.008CrossRefGoogle Scholar
  74. 74.
    Gong H, Hu JQ, Wang JH, Ong CH, Zhu FR (2006) Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sens Actuators B Chem 115(1):247–251.  https://doi.org/10.1016/j.snb.2005.09.008CrossRefGoogle Scholar
  75. 75.
    Parthibavarman M, Renganathan B, Sastikumar D (2013) Development of high sensitivity ethanol gas sensor based on Co-doped SnO2 nanoparticles by microwave irradiation technique. Curr Appl Phys 13(7):1537–1544.  https://doi.org/10.1016/j.cap.2013.05.016CrossRefGoogle Scholar
  76. 76.
    Jing Z, Wu S (2006) Synthesis, characterization and gas sensing properties of undoped and Co-doped γ-Fe2O3-based gas sensors. Mater Lett 60(7):952–956.  https://doi.org/10.1016/j.matlet.2005.10.051CrossRefGoogle Scholar
  77. 77.
    Liu L, Li S, Zhuang J, Wang L, Zhang J, Li H, Liu Z, Han Y, Jiang X, Zhang P (2011) Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning. Sens Actuators B Chem 155(2):782–788.  https://doi.org/10.1016/j.snb.2011.01.047CrossRefGoogle Scholar
  78. 78.
    Zheng K, Gu L, Sun D, Mo X, Chen G (2010) The properties of ethanol gas sensor based on Ti doped ZnO nanotetrapods. Mater Sci Eng B 166(1):104–107.  https://doi.org/10.1016/j.mseb.2009.09.029CrossRefGoogle Scholar
  79. 79.
    Guo P, Pan H (2006) Selectivity of Ti-doped In2O3 ceramics as an ammonia sensor. Sens Actuators B Chem 114(2):762–767.  https://doi.org/10.1016/j.snb.2005.07.040CrossRefGoogle Scholar
  80. 80.
    Song XC, Yang E, Liu G, Zhang Y, Liu ZS, Chen HF, Wang Y (2010) Preparation and photocatalytic activity of Mo-doped WO3 nanowires. J Nanopart Res 12(8):2813–2819.  https://doi.org/10.1007/s11051-010-9859-8CrossRefGoogle Scholar
  81. 81.
    Mai LQ, Hu B, Hu T, Chen W, Gu ED (2006) Electrical property of Mo-doped VO2 nanowire array film by melting—quenching sol–gel method. J Phys Chem B 110(39):19083–19086.  https://doi.org/10.1021/jp0642701CrossRefGoogle Scholar
  82. 82.
    Feng C, Wang C, Cheng P, Li X, Wang B, Guan Y, Ma J, Zhang H, Sun Y, Sun P, Zheng J, Lu G (2015) Facile synthesis and gas sensing properties of La2O3–WO3 nanofibers. Sens Actuators B Chem 221:434–442.  https://doi.org/10.1016/j.snb.2015.06.114CrossRefGoogle Scholar
  83. 83.
    Mohanapriya P, Segawa H, Watanabe K, Watanabe K, Samitsu S, Natarajan TS, Jaya NV, Ohashi N (2013) Enhanced ethanol-gas sensing performance of Ce-doped SnO2 hollow nanofibers prepared by electrospinning. Sens Actuators B Chem 188:872–878.  https://doi.org/10.1016/j.snb.2013.07.016CrossRefGoogle Scholar
  84. 84.
    Wei D, Huang Z, Wang L, Chuai X, Zhang S, Lu G (2018) Hydrothermal synthesis of Ce-doped hierarchical flower-like In2O3 microspheres and their excellent gas-sensing properties. Sens Actuators B Chem 255:1211–1219.  https://doi.org/10.1016/j.snb.2017.07.162CrossRefGoogle Scholar
  85. 85.
    Li Z, Wang W, Zhao Z, Liu X, Song P (2017) One-step hydrothermal preparation of Ce-doped MoO3 nanobelts with enhanced gas sensing properties. RSC Adv 7(45):28366–28372.  https://doi.org/10.1039/C7RA02893HCrossRefGoogle Scholar
  86. 86.
    Han D, Song P, Zhang S, Zhang H, Xu Q, Wang Q (2015) Enhanced methanol gas-sensing performance of Ce-doped In2O3 porous nanospheres prepared by hydrothermal method. Sens Actuators B Chem 216:488–496.  https://doi.org/10.1016/j.snb.2015.04.083CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of ChemistryFudan UniversityShanghaiChina

Personalised recommendations