Advertisement

Semiconducting Metal Oxides: Morphology and Sensing Performance

  • Yonghui DengEmail author
Chapter

Abstract

The morphology and crystallographic structure of sensing materials can change the gas-sensing characteristics of metal oxide sensors. This chapter discusses the parameters that influence the gas sensors’ performance such as film thickness, grain size, agglomeration, porosity, faceting, grain network, surface geometry, and film texture on the main analytical characteristics (e.g., absolute magnitude and selectivity of sensor response, response–recovery time, and temporal stability). For example, the decrease of thickness, grain size and degree of texture helps to decrease time constants of metal oxide sensors. However, it is impossible to give a universal decision for simultaneous optimization all gas-sensing characteristics. In addition, synthesis methods of metal oxides sensing materials are also summarized in this chapter including sol–gel synthesis, hydro- and solvothermal reaction, self-assembly method and chemical vapor deposition (CVD) method.

Keywords

Metal oxides gas sensors Synthesizing approaches Grain size Mesoporous structure Gas sensing performance 

References

  1. 1.
    Korotcenkov G (2007) Practical aspects in design of one-electrode semiconductor gas sensors: status report. Sens Actuators B Chem 121(2):664–678.  https://doi.org/10.1016/j.snb.2006.04.092CrossRefGoogle Scholar
  2. 2.
    Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sens Actuators B Chem 107(1):209–232.  https://doi.org/10.1016/j.snb.2004.10.006CrossRefGoogle Scholar
  3. 3.
    Tsiulyanu D, Marian S, Liess H, Eisele I (2004) Effect of annealing and temperature on the NO2 sensing properties of tellurium based films. Sens Actuators B Chem 100(3):380–386.  https://doi.org/10.1016/j.snb.2004.02.005CrossRefGoogle Scholar
  4. 4.
    Korotcenkov G, Brinzari V, Schwank J, DiBattista M, Vasiliev A (2001) Peculiarities of SnO2 thin film deposition by spray pyrolysis for gas sensor application. Sens Actuators B Chem 77:244–252.  https://doi.org/10.1016/s0925-4005(01)00741-9CrossRefGoogle Scholar
  5. 5.
    Brinzari V, Korotcenkov G, Golovanov V (2001) Factors influencing the gas sensing characteristics of tin dioxide films deposited by spray pyrolysis: understanding and possibilities of control. Thin Solid Films 391:167–175.  https://doi.org/10.1016/s0040-6090(01)00978-6CrossRefGoogle Scholar
  6. 6.
    Korotcenkov G (2008) The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng B 61:1–39.  https://doi.org/10.1016/j.mser.2008.02.001CrossRefGoogle Scholar
  7. 7.
    Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7:143–167.  https://doi.org/10.1023/a:1014405811371CrossRefGoogle Scholar
  8. 8.
    Ogawa H, Nishikawa M, Abe A (1982) Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J Appl Phys 53(6):4448–4455.  https://doi.org/10.1063/1.331230CrossRefGoogle Scholar
  9. 9.
    Rothschild A, Komem Y (2004) The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J Appl Phys 95(11):6374–6380.  https://doi.org/10.1063/1.1728314CrossRefGoogle Scholar
  10. 10.
    Kawamura F, Takahashi T, Yasui I, Sunagawa I (2001) Impurity effect on <111> and <110> directions of growing SnO2 single crystals in SnO2–CU2O flux system. J Cryst Growth 233:259–268.  https://doi.org/10.1016/s0040-6090(01)00978-6CrossRefGoogle Scholar
  11. 11.
    Barsan N, Schweizer-Berberich M, Göpel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J Anal Chem 365:287–304.  https://doi.org/10.1007/s002160051490CrossRefGoogle Scholar
  12. 12.
    Chen F, Zhao T, Fei YY, Lu H, Chen Z, Yang G, Zhu XD (2002) Surface segregation of bulk oxygen on oxidation of epitaxially grown Nb-doped SrTiO3 on SrTiO3(001). Appl Phys Lett 80(16):2889–2891.  https://doi.org/10.1063/1.1473694CrossRefGoogle Scholar
  13. 13.
    Wang X, Sui Y, Yang Q, Cheng J, Qian Z, Liu Z, Su W (2007) Effect of doping Zn on the magnetoresistance of polycrystalline Sr2FeMoO6. J Alloy Compd 431(1–2):6–9.  https://doi.org/10.1016/j.jallcom.2006.05.034CrossRefGoogle Scholar
  14. 14.
    Meier J, Schiøtz J, Liu P, Nørskov JK, Stimming U (2004) Nano-scale effects in electrochemistry. Chem Phys Lett 390:440–444.  https://doi.org/10.1016/j.cplett.2004.03.149CrossRefGoogle Scholar
  15. 15.
    Castañeda L (2007) Effects of palladium coatings on oxygen sensors of titanium dioxide thin films. Mater Sci Eng B 139(2–3):149–154.  https://doi.org/10.1016/j.mseb.2007.01.046CrossRefGoogle Scholar
  16. 16.
    Matko I, Gaidi M, Chenevier B, Charai A, Saikaly W, Labeau M (2002) Pt doping of SnO2 thin films. J Electrochem Soc 149(8):H153.  https://doi.org/10.1149/1.1488919CrossRefGoogle Scholar
  17. 17.
    Alfredsson M, Richard C, Catlow A (2004) Predicting the metal growth mode and wetting of noble metals supported on c-ZrO2. Surf Sci 561(1):43–56.  https://doi.org/10.1016/j.susc.2004.03.073CrossRefGoogle Scholar
  18. 18.
    Hyodo T, Abe S, Shimizu Y, Egashira M (2003) Gas-sensing properties of ordered mesoporous SnO2 and effects of coatings thereof. Sens Actuators B Chem 93(1–3):590–600.  https://doi.org/10.1016/s0925-4005(03)00208-9CrossRefGoogle Scholar
  19. 19.
    Sberveglieri G, Groppelli S, Nelli P, Camanzi A (1991) A new technique for the preparation of highly sensitive hydrogen sensors based on SnO2 (Bi2O3) thin films. Sens Actuators B Chem 5:253–255.  https://doi.org/10.1016/0925-4005(91)80258-lCrossRefGoogle Scholar
  20. 20.
    McAleer JF, Moseley PT, Norris JO, Williams DE (1987) Tin dioxide gas sensors. J Chem Soc Faraday Trans 1:1323–1346.  https://doi.org/10.1039/f19878301323CrossRefGoogle Scholar
  21. 21.
    Korotcenkov G, Brinzari V, Stetter JR, Blinov I, Blaja V (2007) The nature of processes controlling the kinetics of indium oxide-based thin film gas sensor response. Sens Actuators B Chem 128(1):51–63.  https://doi.org/10.1016/j.snb.2007.05.028CrossRefGoogle Scholar
  22. 22.
    Wang J, Gan M, Shi J (2007) Detection and characterization of penetrating pores in porous materials. Mater Charact 58(1):8–12.  https://doi.org/10.1016/j.matchar.2006.02.016CrossRefGoogle Scholar
  23. 23.
    Rumyantseva MN, Gaskov AM, Rosman N, Pagnier T, Morante JR (2005) Raman surface vibration modes in nanocrystalline SnO2: correlation with gas sensor performances. Chem Mater 17:893–901.  https://doi.org/10.1021/cm0490470CrossRefGoogle Scholar
  24. 24.
    Min B (2004) SnO2 thin film gas sensor fabricated by ion beam deposition. Sens Actuators B Chem 98(2–3):239–246.  https://doi.org/10.1016/j.snb.2003.10.023CrossRefGoogle Scholar
  25. 25.
    Korotcenkov G, Ivanov M, Blinov I, Stetter JR (2007) Kinetics of indium oxide-based thin film gas sensor response: the role of “redox” and adsorption/desorption processes in gas sensing effects. Thin Solid Films 515(7–8):3987–3996.  https://doi.org/10.1016/j.tsf.2006.09.044CrossRefGoogle Scholar
  26. 26.
    Williams DE, Pratt KF (2000) Microstructure effects on the response of gas-sensitive resistors based on semiconducting oxides. Sens Actuators B Chem 70:214–221.  https://doi.org/10.1016/s0925-4005(00)00572-4CrossRefGoogle Scholar
  27. 27.
    Tan OK, Zhu W, Yan Q, Kong LB (2000) Size effect and gas sensing characteristics of nanocrystalline xSnO2-(1-x)a-Fe2O3 ethanol sensors. Sens Actuators B Chem 65:361–365.  https://doi.org/10.1016/s0925-4005(99)00414-1CrossRefGoogle Scholar
  28. 28.
    Hench LL, West JK (1990) The sol-gel process. Chem Rev 90(33–72):33.  https://doi.org/10.1021/cr00099a003CrossRefGoogle Scholar
  29. 29.
    Vioux A (1997) Nonhydrolytic sol–gel routes to oxides. Chem Mater 9:2292–2299.  https://doi.org/10.1504/ijenm.2016.078967CrossRefGoogle Scholar
  30. 30.
    Trentler TJ, Denler TE, Bertone JF, Agrawal A, Colvin VL (1999) Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J Am Chem Soc 121:1613–1614.  https://doi.org/10.1021/ja983361bCrossRefGoogle Scholar
  31. 31.
    Zhang Z, Zhong X, Liu S, Li D, Han M (2005) Aminolysis route to monodisperse titania nanorods with tunable aspect ratio. Angew Chem Int Ed Engl 44(22):3466–3470.  https://doi.org/10.1002/anie.200500410CrossRefGoogle Scholar
  32. 32.
    Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE(E=S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715.  https://doi.org/10.1021/ja00072a025CrossRefGoogle Scholar
  33. 33.
    Kumar S, Nann T (2006) Shape control of II-VI semiconductor nanomaterials. Small 2(3):316–329.  https://doi.org/10.1002/smll.200500357CrossRefGoogle Scholar
  34. 34.
    Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627.  https://doi.org/10.1126/science.1114397CrossRefGoogle Scholar
  35. 35.
    Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946.  https://doi.org/10.1021/cr030027bCrossRefGoogle Scholar
  36. 36.
    Cabanas A, Darr JA, Poliakoff M, Lester E (2000) A continuous and clean one-step synthesis of nano-particulate Ce1−xZrxO2 solid solutions in near-critical water. Chem Commun 11:901–902.  https://doi.org/10.1039/b001424iCrossRefGoogle Scholar
  37. 37.
    Djerdj I, Arčon D, Jagličić Z, Niederberger M (2008) Nonaqueous synthesis of metal oxide nanoparticles: short review and doped titanium dioxide as case study for the preparation of transition metal-doped oxide nanoparticles. J Solid State Chem 181(7):1571–1581.  https://doi.org/10.1016/j.jssc.2008.04.016CrossRefGoogle Scholar
  38. 38.
    Rao CNR, Cheetham AK, Thirumurugan A (2008) Hybrid inorganic–organic materials: a new family in condensed matter physics. J Phys Condens Matter 20(8):083202.  https://doi.org/10.1088/0953-8984/20/8/083202CrossRefGoogle Scholar
  39. 39.
    Titirici MM, Antonietti M, Thomas A (2006) A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach. Chem Mater 18:3808–3812.  https://doi.org/10.1021/cm052768uCrossRefGoogle Scholar
  40. 40.
    Xiao H-M, Fu S-Y, Zhu L-P, Li Y-Q, Yang G (2007) Controlled synthesis and characterization of CuO nanostructures through a facile hydrothermal route in the presence of sodium citrate. Eur J Inorg Chem 14:1966–1971.  https://doi.org/10.1002/ejic.200601029CrossRefGoogle Scholar
  41. 41.
    Jia CJ, Sun LD, Luo F, Han XD, Heyderman LJ et al (2008) Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J Am Chem Soc 130:16968–16977.  https://doi.org/10.1021/ja805152tCrossRefGoogle Scholar
  42. 42.
    Wang SB, Min Y-L, Yu SH (2007) Synthesis and magnetic properties of uniform hematite nanocubes. J Phys Chem C 111:3551–3554.  https://doi.org/10.1021/jp068647eCrossRefGoogle Scholar
  43. 43.
    Patzke GR, Michailovski A, Krumeich F, Nesper R, Grunwaldt JD, Baiker A (2004) One-step synthesis of submicrometer fibers of MoO3. Chem Mater 16:1126–1134.  https://doi.org/10.1021/cm031057yCrossRefGoogle Scholar
  44. 44.
    Nagappa B, Chandrappa GT, Livage J (2005) Synthesis, characterization and applications of nanostructural/nanodimensional metal oxides. Pramana J Phys 65:917–213.  https://doi.org/10.1007/bf02704092CrossRefGoogle Scholar
  45. 45.
    Uchiyama H, Ohgi H, Imai H (2006) Selective preparation of SnO2 and SnO crystals with controlled morphologies in an aqueous solution system. Cryst Growth Des 6:2186–2190.  https://doi.org/10.1021/cg060328pCrossRefGoogle Scholar
  46. 46.
    Cheng B, Russell JM, Shi W, Zhang L, Samulski ET (2004) Large-scale, solution-phase growth of single-crystalline SnO2 nanorods. J Am Chem Soc 126:5972–5973.  https://doi.org/10.1021/ja0493244CrossRefGoogle Scholar
  47. 47.
    Menzel R, Peiró AM, Durrant JR, Shaffer MS (2006) Impact of hydrothermal processing conditions on high aspect ratio titanate nanostructures. Chem Mater 18:6059–6068.  https://doi.org/10.1021/cm061721lCrossRefGoogle Scholar
  48. 48.
    Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19(14):145605.  https://doi.org/10.1088/0957-4484/19/14/145605CrossRefGoogle Scholar
  49. 49.
    Chandrappa GT, Steunou N, Cassaignon S, Bauvais C, Livage J (2003) Hydrothermal synthesis of vanadium oxide nanotubes from V2O5 gels. Catal Today 78(1–4):85–89.  https://doi.org/10.1016/s0920-5861(02)00298-5CrossRefGoogle Scholar
  50. 50.
    Clavel G, Willinger MG, Zitoun D, Pinna N (2007) Solvent dependent shape and magnetic properties of doped ZnO nanostructures. Adv Func Mater 17(16):3159–3169.  https://doi.org/10.1002/adfm.200601142CrossRefGoogle Scholar
  51. 51.
    Zhang L, Wang W, Zhou L, Xu H (2007) Bi2WO6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities. Small 3(9):1618–1625.  https://doi.org/10.1002/smll.200700043CrossRefGoogle Scholar
  52. 52.
    Zhou Y, Vuille K, Heel A, Patzke Greta R (2009) Studies on nanostructured Bi2WO6: convenient hydrothermal and TiO2-coating pathways. Z Anorg Allg Chem 635(12):1848–1855.  https://doi.org/10.1002/zaac.200900187CrossRefGoogle Scholar
  53. 53.
    Sun L, Guo Q, Wu X, Luo S, Pan W, Huang K, Lu J, Ren L, Cao M, Hu C (2007) Synthesis and photoluminescent properties of strontium tungstate nanostructures. 111(2):532–537.  https://doi.org/10.1021/jp064923dCrossRefGoogle Scholar
  54. 54.
    Kiebach R, Pienack N, Bensch W, Grunwaldt JD, Michailovski A, Baiker A, Fox T, Zhou Y, Patzke GR (2008) Hydrothermal formation of W/Mo-oxides: a multidisciplinary study of growth and shape. Chem Mater 2008:3022–3033.  https://doi.org/10.1021/cm7028036CrossRefGoogle Scholar
  55. 55.
    Michailovski A, Wörle M, Sheptyakov D, Patzke GR (2011) Hydrothermal synthesis of anisotropic alkali and alkaline earth vanadates. J Mater Res 22(01):5–18.  https://doi.org/10.1557/jmr.2007.0002CrossRefGoogle Scholar
  56. 56.
    Lee SH, Kim TW, Park DH, Choy JH, Hwang SJ (2007) Single-step synthesis, characterization, and application of nanostructured KxMn1−yCoyO2−a with controllable chemical compositions and crystal structures. Chem Mater 19:5010–5017.  https://doi.org/10.1002/chin.200749017
  57. 57.
    Hu Y, Gu H, Hu Z, Di W, Yuan Y, You J, Cao W, Wang Y, Chan HLW (2008) Controllable hydrothermal synthesis of KTa1−xNbxO3 nanostructures with various morphologies and their growth mechanisms. Cryst Growth Des 8:832–837.  https://doi.org/10.1021/cg070230qCrossRefGoogle Scholar
  58. 58.
    Wei X, Xu G, Ren Z, Wang Y, Shen G, Han G (2008) Composition and shape control of single-crystalline Ba1−xSrxTiO3 (x = 0–1) nanocrystals via a solvothermal route. J Cryst Growth 310(18):4132–4137.  https://doi.org/10.1016/j.jcrysgro.2008.04.039CrossRefGoogle Scholar
  59. 59.
    Prades M, Beltrán H, Masó N, Cordoncillo E, West AR (2008) Phase transition hysteresis and anomalous Curie-Weiss behavior of ferroelectric tetragonal tungsten bronzes Ba2RETi2Nb3O15:RE=Nd,Sm. J Appl Phys 104(10):104118.  https://doi.org/10.1063/1.3021460CrossRefGoogle Scholar
  60. 60.
    Su Y, Li L, Li G (2008) Synthesis and optimum luminescence of CaWO4-based red phosphors with codoping of Eu3+ and Na+. Chem Mater 20:6060–6067.  https://doi.org/10.1021/cm8014435CrossRefGoogle Scholar
  61. 61.
    Zhang L, Fu H, Zhang C, Zhu Y (2008) Effects of Ta5+ substitution on the structure and photocatalytic behavior of the Ca2Nb2O7 photocatalyst. J Phys Chem C 112:3126–3133.  https://doi.org/10.1021/jp074092rCrossRefGoogle Scholar
  62. 62.
    Yucai H (2006) Hydrothermal synthesis of nano Ce–Zr–Y oxide solid solution for automotive three-way catalyst. J Am Ceram Soc 89(9):2949–2951.  https://doi.org/10.1111/j.1551-2916.2006.01130.xCrossRefGoogle Scholar
  63. 63.
    Gözüak F, Köseoğlu Y, Baykal A, Kavas H (2009) Synthesis and characterization of CoxZn1−xFe2O4 magnetic nanoparticles via a PEG-assisted route. J Magn Magn Mater 321(14):2170–2177.  https://doi.org/10.1016/j.jmmm.2009.01.008CrossRefGoogle Scholar
  64. 64.
    Zhang T, Jin CG, Qian T, Lu XL, Bai JM, Li XG (2004) Hydrothermal synthesis of single-crystalline La0.5Ca0.5MnO3 nanowires at low temperature. J Mater Chem 14(18):2787.  https://doi.org/10.1039/b405288aCrossRefGoogle Scholar
  65. 65.
    Niu J, Deng J, Liu W, Zhang L, Wang G, Dai H, He H, Zi X (2007) Nanosized perovskite-type oxides La1−xSrxMO3−δ (M=Co, Mn; x=0, 0.4) for the catalytic removal of ethylacetate. Catal Today 126(3–4):420–429.  https://doi.org/10.1016/j.cattod.2007.06.027CrossRefGoogle Scholar
  66. 66.
    Chen T-Y, Fung K-Z (2008) Synthesis of and densification of oxygen-conducting La0.8Sr0.2Ga0.8Mg0.2O2.8 nano powder prepared from a low temperature hydrothermal urea precipitation process. J Eur Ceram Soc 28(4):803–810.  https://doi.org/10.1016/j.jeurceramsoc.2007.08.006CrossRefGoogle Scholar
  67. 67.
    Zhou L, Liang Y, Hu L, Han X, Yi Z, Sun J, Yang S (2008) Much improved capacity and cycling performance of LiVMoO6 cathode for lithium ion batteries. J Alloy Compd 457(1–2):389–393.  https://doi.org/10.1016/j.jallcom.2007.02.126CrossRefGoogle Scholar
  68. 68.
    Zhang Q, Zhu M, Zhang Q, Li Y, Wang H (2009) Synthesis and characterization of carbon nanotubes decorated with manganese–zinc ferrite nanospheres. Mater Chem Phys 116(2–3):658–662.  https://doi.org/10.1016/j.matchemphys.2009.05.029CrossRefGoogle Scholar
  69. 69.
    Celaya Sanfiz A, Hansen TW, Girgsdies F, Timpe O, Rödel E, Ressler T, Trunschke A, Schlögl R (2008) Preparation of phase-pure M1 MoVTeNb oxide catalysts by hydrothermal synthesis-influence of reaction parameters on structure and morphology. Top Catal 50(1–4):19–32.  https://doi.org/10.1007/s11244-008-9106-zCrossRefGoogle Scholar
  70. 70.
    Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J (2008) The role of interparticle and external forces in nanoparticle assembly. Nat Mater 7:527–538.  https://doi.org/10.1038/nmat2206CrossRefGoogle Scholar
  71. 71.
    Pinheiro AV, Han D, Shih WM, Yan H (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6(12):763–772.  https://doi.org/10.1038/nnano.2011.187CrossRefGoogle Scholar
  72. 72.
    Dill KA, MacCallum JL (2012) The protein-folding problem, 50 years on. Science 338:1042–1046.  https://doi.org/10.1126/science.1219021CrossRefGoogle Scholar
  73. 73.
    Chen IA, Walde P (2010) From self-assembled vesicles to protocells. Cold Spring Harb Perspect Biol 2(7):1–13.  https://doi.org/10.1101/cshperspect.a002170CrossRefGoogle Scholar
  74. 74.
    Bates FS, Hillmyer MA, Lodge TP, Bates CM, Delaney KT, Fredrickson GH (2012) Multiblock polymers: panacea or pandora’s box? Science 336:434–440.  https://doi.org/10.1126/science.1215368CrossRefGoogle Scholar
  75. 75.
    Kim S-H, Lee SY, Yang S-M, Yi G-R (2011) Self-assembled colloidal structures for photonics. NPG Asia Mater 3(1):25–33.  https://doi.org/10.1038/asiamat.2010.192CrossRefGoogle Scholar
  76. 76.
    Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992.  https://doi.org/10.1126/science.287.5460.1989CrossRefGoogle Scholar
  77. 77.
    Murray CB, Kagan AC, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610.  https://doi.org/10.1146/annurev.matsci.30.1.545CrossRefGoogle Scholar
  78. 78.
    Claridge SA, Castleman AW, Khanna SN, Murray CB, Sen A, Weiss PS (2009) Cluster-assembled materials. ACS Nano 3:244–245.  https://doi.org/10.1021/nn800820eCrossRefGoogle Scholar
  79. 79.
    Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554.  https://doi.org/10.1021/cr9502357CrossRefGoogle Scholar
  80. 80.
    Vericat C, Vela ME, Benitez G, Carro P, Salvarezza RC (2010) Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem Soc Rev 39(5):1805.  https://doi.org/10.1039/b907301aCrossRefGoogle Scholar
  81. 81.
    Batista CAS, Larson RG, Kotov NA (2015) Nonadditivity of nanoparticle interactions. Science 350:1242477–1242471–1242410.  https://doi.org/10.1126/science.1242477CrossRefGoogle Scholar
  82. 82.
    Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) “Dip-Pen” nanolithography. Science 283:661–663.  https://doi.org/10.1126/science.283.5402.661CrossRefGoogle Scholar
  83. 83.
    Lin XM, Jaeger HM, Sorensen CM, Klabunde KJ (2001) Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates. J Phys Chem B 105:3353–3357.  https://doi.org/10.1021/jp0102062CrossRefGoogle Scholar
  84. 84.
    Talapin DV, Murray CB (2005) PbSe Nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310:86–89.  https://doi.org/10.1126/science.1116703CrossRefGoogle Scholar
  85. 85.
    Bigioni TP, Lin X-M, Nguyen TT, Corwin EI, Witten TA, Jaeger HM (2006) Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat Mater 5(4):265–270.  https://doi.org/10.1038/nmat1611CrossRefGoogle Scholar
  86. 86.
    Bodnarchuk MI, Kovalenko MV, Heiss W, Talapin DV (2010) Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor. J Am Chem Soc 132:11967–11977.  https://doi.org/10.1021/ja103083qCrossRefGoogle Scholar
  87. 87.
    Dong A, Chen J, Vora PM, Kikkawa JM, Murray CB (2010) Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 466(7305):474–477.  https://doi.org/10.1038/nature09188CrossRefGoogle Scholar
  88. 88.
    Aleksandrovic V, Greshnykh D, Randjelovic I, Fromsdorf A, Kornowski A, Roth SV, Klinke C, Weller H (2008) Preparation and electrical properties of cobalt platinum nanoparticle monolayers deposited by the Langmuir Blodgett technique. ACS Nano 2:1123–1130.  https://doi.org/10.1021/nn800147aCrossRefGoogle Scholar
  89. 89.
    Rupich SM, Shevchenko EV, Bodnarchuk MI, Lee B, Talapin DV (2010) Size-dependent multiple twinning in nanocrystal superlattices. J Am Chem Soc 132:289–296.  https://doi.org/10.1021/ja9074425CrossRefGoogle Scholar
  90. 90.
    Chayen NE (2004) Turning protein crystallisation from an art into a science. Curr Opin Struct Biol 14:577–583.  https://doi.org/10.1016/j.sbi.2004.08.002CrossRefGoogle Scholar
  91. 91.
    Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1998) Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396:152–155.  https://doi.org/10.1038/24132CrossRefGoogle Scholar
  92. 92.
    Zhu Y, Zhao Y, Ma J, Cheng X, Xie J, Xu P, Liu H, Liu H, Zhang H, Wu M, Elzatahry AA, Alghamdi A, Deng Y, Zhao D (2017) Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J Am Chem Soc 139(30):10365–10373.  https://doi.org/10.1021/jacs.7b04221CrossRefGoogle Scholar
  93. 93.
    Deng Y, Wei J, Sun Z, Zhao D (2013) Large-pore ordered mesoporous materials templated from non-pluronic amphiphilic block copolymers. Chem Soc Rev 42(9):4054–4070.  https://doi.org/10.1039/c2cs35426hCrossRefGoogle Scholar
  94. 94.
    Knapp CE, Carmalt CJ (2016) Solution based CVD of main group materials. Chem Soc Rev 45(4):1036–1064.  https://doi.org/10.1039/c5cs00651aCrossRefGoogle Scholar
  95. 95.
    Marchand P, Hassan IA, Parkin IP, Carmalt CJ (2013) Aerosol-assisted delivery of precursors for chemical vapour deposition: expanding the scope of CVD for materials fabrication. Dalton Trans 42(26):9406–9422.  https://doi.org/10.1039/c3dt50607jCrossRefGoogle Scholar
  96. 96.
    Condorelli GG, Malandrino G, Fragalà IL (2007) Engineering of molecular architectures of β-diketonate precursors toward new advanced materials. Coord Chem Rev 251:1931–1950.  https://doi.org/10.1016/j.ccr.2007.04.016CrossRefGoogle Scholar
  97. 97.
    Bekermann D, Barreca D, Gasparotto A, Maccato C (2012) Multi-component oxide nanosystems by chemical vapor deposition and related routes: challenges and perspectives. CrystEngComm 14(20):6347.  https://doi.org/10.1039/c2ce25624jCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of ChemistryFudan UniversityShanghaiChina

Personalised recommendations