Advertisement

Sensing Mechanism and Evaluation Criteria of Semiconducting Metal Oxides Gas Sensors

  • Yonghui DengEmail author
Chapter

Abstract

Analogue to other sensing system, semiconductor metal oxide (SMO) sensing systems have their own working principle or sensing mechanism evaluation criteria about sensing performance. In this chapter, for the single-component metal oxide gas sensing mechanism, including n-type semiconductors and p-type semiconductors, the effects of surface-adsorbed oxygen and depletion layer width on resistance change are discussed; for metal oxide complexes, including n–n junction, p–p junction and p–n junction, the transition of charge between different materials are analyzed; for heteroatom-doped metal oxides, the defects introduced by heteroatoms and its influence on the electronic structure of host materials are discussed; for catalyst-decorated metal oxide, electronic sensitization and chemical sensitization of catalyst are analyzed and illustrated. Finally, the effect of metal oxide grain size on gas sensing properties was summarized. Based on the metal oxide resistive gas sensing mechanism, the evaluation criteria of gas sensing performance are summarized, including sensitivity, operating temperature, selectivity, stability and response–recovery time.

Keywords

Gas sensing mechanism Metal oxides gas sensors Gas sensing evaluation criteria Sensitivity 

References

  1. 1.
    Yamazoe N (2005) Toward innovations of gas sensor technology. Sens Actuators B 108:2–14.  https://doi.org/10.1016/j.snb.2004.12.075CrossRefGoogle Scholar
  2. 2.
    Kim H, Lee J (2014) Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens Actuators B 192:607–627.  https://doi.org/10.1016/j.snb.2013.11.005CrossRefGoogle Scholar
  3. 3.
    Zhou X, Lee S, Xu Z, Yoon J (2015) Recent progress on the development of chemosensors for gases. Chem Rev 115:7944–8000.  https://doi.org/10.1021/cr500567rCrossRefGoogle Scholar
  4. 4.
    Zhou X, Cheng X, Zhu Y, Elzatahry A, Alghamdi A, Deng Y, Zhao D (2018) Ordered porous metal oxide semiconductors for gas sensing. Chin Chem Lett 29:405–416.  https://doi.org/10.1016/j.cclet.2017.06.021CrossRefGoogle Scholar
  5. 5.
    Miller D, Akbar S, Morris P (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuators B 204:250–272.  https://doi.org/10.1016/j.snb.2014.07.074 CrossRefGoogle Scholar
  6. 6.
    Zhu Y, Zhao Y, Ma J, Cheng X, Xie J, Xu P, Liu H, Liu H, Zhang H, Wu M, Elzatahry A, Alghamdi A, Deng Y, Zhao D (2017) Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J Am Chem Soc 139:10365.  https://doi.org/10.1021/jacs.7b04221CrossRefGoogle Scholar
  7. 7.
    Xiao X, Liu L, Ma J, Ren Y, Cheng X, Zhu Y, Zhao D, Elzatahry A, Alghamdi A, Deng Y (2018) Ordered mesoporous tin oxide semiconductors with large pores and crystallized wall for high-performance gas sensing. ACS Appl Mater Interfaces 10:1871–1880.  https://doi.org/10.1021/acsami.7b18830CrossRefGoogle Scholar
  8. 8.
    Wang Z, Zhu Y, Luo W, Ren Y, Cheng X, Xu P, Li X, Deng Y, Zhao D (2016) Controlled synthesis of ordered mesoporous carbon-cobalt oxide nanocomposites with large mesopores and graphitic walls. Chem Mater 28:7773–7780.  https://doi.org/10.1021/acs.chemmater.6b03035CrossRefGoogle Scholar
  9. 9.
    Han J, Wang T, Li T, Yu H, Yang Y, Dong X (2018) Enhanced NOx gas sensing properties of ordered mesoporous WO3/ZnO prepared by electroless plating. Adv Mater Interfaces 5:1701167.  https://doi.org/10.1002/admi.201701167CrossRefGoogle Scholar
  10. 10.
    Gao J, Wang L, Kan K, Xu S, Jing L, Liu S, Shen P, Li L, Shi K (2014) One-step synthesis of mesoporous Al2O3–In2O3 nanofibres with remarkable gas-sensing performance to NOx at room temperature. J Mater Chem A 2:949.  https://doi.org/10.1039/c3ta13943cCrossRefGoogle Scholar
  11. 11.
    Sun Y, Chen L, Wang Y, Zhao Z, Li P, Zhang W, Leprince-Wang Y, Hu J (2017) Synthesis of MoO3/WO3 composite nanostructures for highly sensitive ethanol and acetone detection. J Mater Sci 52:1561–1572.  https://doi.org/10.1007/s10853-016-0450-2CrossRefGoogle Scholar
  12. 12.
    Tawfik Alali K, Lu Z, Zhang H, Liu J, Liu Q, Li R, Aljebawic K, Wang J (2017) p–p heterojunction CuO/CuCo2O4 nanotubes synthesized via electrospinning technology for detecting n-propanol gas at room temperature. Inorg Chem Front 4:1219.  https://doi.org/10.1039/c7qi00192dCrossRefGoogle Scholar
  13. 13.
    Wang Y, Zhang H, Sun X (2016) Electrospun nanowebs of NiO/SnO2 p–n heterojunctions for enhanced gas sensing. Appl Surf Sci 389:514–520.  https://doi.org/10.1016/j.apsusc.2016.07.073CrossRefGoogle Scholar
  14. 14.
    Kim H, Choi K, Kim K, Kim I, Cao G, Lee J (2010) Ultra-fast responding and recovering C2H5OH sensors using SnO2 hollow spheres prepared and activated by Ni templates. Chem Commun 46:5061–5063.  https://doi.org/10.1039/c0cc00213eCrossRefGoogle Scholar
  15. 15.
    Gai L, Ma L, Jiang H, Ma Y, Tian Y, Liu H (2012) Nitrogen-doped In2O3 nanocrystals constituting hierarchical structures with enhanced gas-sensing properties. CrystEngComm 14:7479–7486.  https://doi.org/10.1039/c2ce25789kCrossRefGoogle Scholar
  16. 16.
    Kim H, Choi K, Kim K, Na C, Lee J (2012) Highly sensitive C2H5OH sensors using Fe-doped NiO hollow spheres. Sens Actuators B 171:1029–1037.  https://doi.org/10.1016/j.snb.2012.06.029CrossRefGoogle Scholar
  17. 17.
    Ma J, Ren Y, Zhou X, Liu L, Zhu Y, Cheng X, Xu P, Li X, Deng Y, Zhao D (2018) Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv Funct Mater 1705268.  https://doi.org/10.1002/adfm.201705268CrossRefGoogle Scholar
  18. 18.
    Zhang J, Song P, Li Z, Zhang S, Yang Z, Wang Q (2016) Enhanced trimethylamine sensing performance of single-crystal MoO3 nanobelts decorated with Au nanoparticles. J Alloys Compd 685:1024–1033.  https://doi.org/10.1016/j.jallcom.2016.06.257CrossRefGoogle Scholar
  19. 19.
    Liu X, Chang Z, Luo L, Lei X, Liu J, Sun X (2012) Sea urchin-like Ag-α-Fe2O3 nanocomposite microspheres: synthesis and gas sensing applications. J Mater Chem 22:7232–7238.  https://doi.org/10.1039/c2jm15742jCrossRefGoogle Scholar
  20. 20.
    Tiemann M (2007) Porous metal oxides as gas sensors. Chem Eur J 13:8376–8388.  https://doi.org/10.1002/chem.200700927CrossRefGoogle Scholar
  21. 21.
    Wagner T, Haffer S, Weinberger C, Klaus D, Tiemann M (2013) Mesoporous materials as gas sensors. Chem Soc Rev 42:4036.  https://doi.org/10.1039/c2cs35379bCrossRefGoogle Scholar
  22. 22.
    Rothschild A, Komem Y (2004) The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J Appl Phys 95:6374–6380.  https://doi.org/10.1063/1.1728314CrossRefGoogle Scholar
  23. 23.
    Xu C, Tamaki J, Miura N, Yamazoe N (1991) Grain-size effects on gas sensitivity of porous SnO2-based elements. Sens Actuators B 3:147–155.  https://doi.org/10.1016/0925-4005(91)80207-zCrossRefGoogle Scholar
  24. 24.
    Barsan N, Schweizer-Berberich M, Göpel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. J Anal Chem 365:284–304.  https://doi.org/10.1007/s002160051490CrossRefGoogle Scholar
  25. 25.
    Korotcenkov G, Cho BK (2012) The role of grain size on the thermal instability of nanostructured metal oxides used in gas sensor applications and approaches for grain-size stabilization. Prog Cryst Growth Charact Mater 58(4):167–208.  https://doi.org/10.1016/j.pcrysgrow.2012.07.001CrossRefGoogle Scholar
  26. 26.
    Zhu Y, Zhao Y, Ma J, Cheng X, Xie J, Xu P, Liu H, Liu H, Zhang H, Wu M, Elzatahry AA, Alghamdi A, Deng Y, Zhao D (2017) Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J Am Chem Soc 139(30):10365–10373.  https://doi.org/10.1021/jacs.7b04221CrossRefGoogle Scholar
  27. 27.
    Pulkkinen U, Rantala TT, Rantala TS, Lantto V (2001) Kinetic Monte Carlo simulation of oxygen exchange of SnO2 surface. J Mol Catal A Chem 166:15–21.  https://doi.org/10.1016/S1381-1169(00)00466-0CrossRefGoogle Scholar
  28. 28.
    Wang Y, Cui X, Yang Q, Liu J, Gao Y, Sun P, Lu G (2016) Preparation of Ag-loaded mesoporous WO3 and its enhanced NO2 sensing performance. Sens Actuators B 225:544–552.  https://doi.org/10.1016/j.snb.2015.11.065CrossRefGoogle Scholar
  29. 29.
    Arunkumar S, Hou T, Kim Y-B, Choi B, Park SH, Jung S, Lee D-W (2017) Au decorated ZnO hierarchical architectures: facile synthesis, tunable morphology and enhanced CO detection at room temperature. Sens Actuators B 243:990–1001.  https://doi.org/10.1016/j.snb.2016.11.152CrossRefGoogle Scholar
  30. 30.
    Ma J, Ren Y, Zhou X, Liu L, Zhu Y, Cheng X, Xu P, Li X, Deng Y, Zhao D (2018) Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv Funct Mater 28(6):1705268.  https://doi.org/10.1002/adfm.201705268CrossRefGoogle Scholar
  31. 31.
    Jing Z, Zhan J (2008) Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv Mater 20(23):4547–4551.  https://doi.org/10.1002/adma.200800243CrossRefGoogle Scholar
  32. 32.
    Hoa ND, Duy NV, El-Safty SA, Hieu NV (2015) Meso-/nanoporous semiconducting metal oxides for gas sensor applications. J Nanomater 2015:1–14.  https://doi.org/10.1155/2015/972025CrossRefGoogle Scholar
  33. 33.
    Korotcenkov G, Brinzari V, Ivanov M, Cerneavschi A, Rodriguez J, Cirera A, Cornet A, Morante J (2005) Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing. Thin Solid Films 479(1–2):38–51.  https://doi.org/10.1016/j.tsf.2004.11.107CrossRefGoogle Scholar
  34. 34.
    Gong JW, Chen QF, Lian MR, Liu NC, Daoust C (2006) Temperature feedback control for improving the stability of a semiconductor-metal-oxide (SMO) gas sensor. IEEE Sens J 6(1):139–145.  https://doi.org/10.1109/jsen.2005.844353CrossRefGoogle Scholar
  35. 35.
    Tiemann M (2007) Porous metal oxides as gas sensors. Chemistry 13(30):8376–8388.  https://doi.org/10.1002/chem.200700927CrossRefGoogle Scholar
  36. 36.
    Liu J, Huang H, Zhao H, Yan X, Wu S, Li Y, Wu M, Chen L, Yang X, Su BL (2016) Enhanced gas sensitivity and selectivity on aperture-controllable 3D interconnected macro-mesoporous ZnO nanostructures. ACS Appl Mater Interfaces 8(13):8583–8590.  https://doi.org/10.1021/acsami.5b12315CrossRefGoogle Scholar
  37. 37.
    Wagner T, Kohl C-D, Froba M, Tiemann M (2006) Gas sensing properties of ordered mesoporous SnO2. Sensors 6:318–323.  https://doi.org/10.3390/s6040318CrossRefGoogle Scholar
  38. 38.
    Wagner T, Sauerwald T, Kohl CD, Waitz T, Weidmann C, Tiemann M (2009) Gas sensor based on ordered mesoporous In2O3. Thin Solid Films 517(22):6170–6175.  https://doi.org/10.1016/j.tsf.2009.04.013CrossRefGoogle Scholar
  39. 39.
    Li Y, Luo W, Qin N, Dong J, Wei J, Li W, Feng S, Chen J, Xu J, Elzatahry AA, Es-Saheb MH, Deng Y, Zhao D (2014) Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing. Angew Chem Int Ed 53(34):9035–9040.  https://doi.org/10.1002/anie.201403817CrossRefGoogle Scholar
  40. 40.
    Wagner T, Haffer S, Weinberger C, Klaus D, Tiemann M (2013) Mesoporous materials as gas sensors. Chem Soc Rev 42(9):4036–4053.  https://doi.org/10.1039/c2cs35379bCrossRefGoogle Scholar
  41. 41.
    Qin Y, Wang F, Shen W, Hu M (2012) Mesoporous three-dimensional network of crystalline WO3 nanowires for gas sensing application. J Alloys Comp 540:21–26.  https://doi.org/10.1016/j.jallcom.2012.06.058CrossRefGoogle Scholar
  42. 42.
    Sun X, Hao H, Ji H, Li X, Cai S, Zheng C (2014) Nanocasting synthesis of In2O3 with appropriate mesostructured ordering and enhanced gas-sensing property. ACS Appl Mater Interfaces 6(1):401–409.  https://doi.org/10.1021/am4044807CrossRefGoogle Scholar
  43. 43.
    Waitz T, Wagner T, Sauerwald T, Kohl C-D, Tiemann M (2009) Ordered mesoporous In2O3: synthesis by structure replication and application as a methane gas sensor. Adv Funct Mater 19(4):653–661.  https://doi.org/10.1002/adfm.200801458CrossRefGoogle Scholar
  44. 44.
    Wagner T, Kohl CD, Morandi S, Malagu C, Donato N, Latino M, Neri G, Tiemann M (2012) Photoreduction of mesoporous In2O3: mechanistic model and utility in gas sensing. Chemistry 18(26):8216–8223.  https://doi.org/10.1002/chem.201103905CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of ChemistryFudan UniversityShanghaiChina

Personalised recommendations