Advertisement

Understanding Semiconducting Metal Oxide Gas Sensors

  • Yonghui DengEmail author
Chapter

Abstract

Research activities regarding semiconductor metal oxide gas sensors are booming all over the world. The importance of semiconductor metal oxide gas sensors has been generally recognized in different research communities, which have been actively promoting fundamental research and practical application of gas sensors. It is well known that semiconductor metal oxide gas sensors have been widely used in various fields, and they are becoming a key demand in modern high-tech society. Therefore, basic research and application technology of semiconductor metal oxide gas sensors have attracted wide attention. This chapter briefly introduces the development history and research progress of semiconductor gas sensors, and particular emphasis is put on introducing recent innovative research and edge-cutting techniques on semiconductor gas sensors.

Keywords

Semiconductor gas sensors Development history Physical and chemical properties 

References

  1. 1.
    Heiland G, Mollwo E, Stockmann F (1959) Electronic processes in zinc oxide. Solid State Phys 8:191–323.  https://doi.org/10.1016/S0081-1947(08)60481-6CrossRefGoogle Scholar
  2. 2.
    Heiland G (1954) Zum Einfluss von Wasserstoff auf die elektrische Leitfähigkeit von ZnO-Kristallen. Zeit Phys 138:459–464.  https://doi.org/10.1007/BF01327362CrossRefGoogle Scholar
  3. 3.
    Kefeli A (1956) Sauerstoffnachweis in Gasen durch Leitfähigkeitsänderung eines Halbleiters(ZnO). Diploma thesis, Institut fürAngewandte Physik, Universität Erlangen, ErlangenGoogle Scholar
  4. 4.
    Bielanski A, Deren J, Haber J (1957) Electric conductivity and catalytic activity of semiconducting oxide catalysts. Nature 179:668–669.  https://doi.org/10.1038/179668a0CrossRefGoogle Scholar
  5. 5.
    Myasnikov IA (1957) The relation between the electric conductance and the adsorptive and sensitizing properties of zinc oxide. I. Electron phenomena in zinc oxide during adsorption of oxygen. Zh Fiz Khim 31:1721–1730Google Scholar
  6. 6.
    Yamazoe N, Sakai G, Shimanoe K (2003) Oxide semiconductor gas sensors. Catal Surv Asia 7:63–75.  https://doi.org/10.1023/A:102343672CrossRefGoogle Scholar
  7. 7.
    Seiyama T, Kato A, Fujiishi K, Nagatani M (1962) A new detector for gaseous components using semiconductive thin films. Anal Chem 34:1502–1503.  https://doi.org/10.1021/ac60191a001CrossRefGoogle Scholar
  8. 8.
    Taguchi N (1962) Gas-detecting device. Jpn Pat 45-38200Google Scholar
  9. 9.
    Eranna G, Joshi BC, Runthala DP, Gupta RP (2004) Oxide materials for development of integrated gas sensors—a comprehensive review. Crit Rev Solid State Mater Sci 29:111–188.  https://doi.org/10.1080/10408430490888977CrossRefGoogle Scholar
  10. 10.
    Yamazoe N (2005) Toward innovations of gas sensor technology. Sens Actuators B 108:2–14.  https://doi.org/10.1016/j.snb.2004.12.075CrossRefGoogle Scholar
  11. 11.
    Zou X, Wang J, Liu X, Wang C, Jiang Y, Wang Y, Xiao X, Ho JC, Li J, Jiang C, Fang Y, Liu W, Liao L (2013) Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement mode transistor. Nano Lett 13:3287–3292.  https://doi.org/10.1021/nl401498tCrossRefGoogle Scholar
  12. 12.
    Mizsei J (1995) How can sensitive and selective semiconductor gas sensors be made? Sens Actuators B 23:173–176.  https://doi.org/10.1016/0925-4005(94)01269-nCrossRefGoogle Scholar
  13. 13.
    Korotcenkov G, Cho BK (2014) Bulk doping influence on the response of conductometric SnO2 gas sensors: understanding through cathodoluminescence study. Sens Actuators B 196:80–910.  https://doi.org/10.1016/j.snb.2014.01.108CrossRefGoogle Scholar
  14. 14.
    Barsan N, Koziej D, Weimar U (2006) Metal oxide-based gas sensor research: how to? Sens Actuators B 121:18–35.  https://doi.org/10.1016/j.snb.2006.09.047CrossRefGoogle Scholar
  15. 15.
    Korotcenkov G (2005) Gas response control through structural and chemical modifications of metal oxide films: state of the art and approaches. Sens Actuators B 209–232.  https://doi.org/10.1016/j.snb.2004.10.006CrossRefGoogle Scholar
  16. 16.
    Jin HK, Kim SH, Shiratori S (2004) Fabrication of nanoporous and hetero structure thin film via a layer-by-layer self assembly method for a gas sensor. Sens Actuators B 102:241–247.  https://doi.org/10.1016/j.snb.2004.04.0260CrossRefGoogle Scholar
  17. 17.
    Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sens Actuators B 5:7–19.  https://doi.org/10.1016/0925-4005(91)80213-4CrossRefGoogle Scholar
  18. 18.
    Arunkumar S, Hou TF, Kim YB, Choi B, Park SH, Jung S, Lee DW (2017) Au Decorated ZnO hierarchical architectures: facile synthesis, tunable morphology and enhanced CO detection at room temperature. Sens Actuators B 243:990–1001.  https://doi.org/10.1016/j.snb.2016.11.152CrossRefGoogle Scholar
  19. 19.
    Campbell J (1995) The surface science of metal oxides. Metall Rev 39:125.  https://doi.org/10.1179/imr.1994.39.3.125CrossRefGoogle Scholar
  20. 20.
    Nowotny J (1988) Surface segregation of defects in oxide ceramic materials. Solid State Ionics 28–30:1235–1243.  https://doi.org/10.1016/0167-2738(88)90363-3CrossRefGoogle Scholar
  21. 21.
    Yamazoe N, Fuchigami J, Kishikawa M, Seiyama T (1978) Interactions of tin oxide surface with O2, H2O and H2. Surf Sci 86:335–344.  https://doi.org/10.1016/0039-6028(79)90411-4CrossRefGoogle Scholar
  22. 22.
    Chang SC (1980) Oxygen chemisorption on tin oxide: correlation between electrical conductivity and EPR measurements. J Vac Sci Technol 17:366.  https://doi.org/10.1116/1.570389CrossRefGoogle Scholar
  23. 23.
    Itoh T, Toshiteru M, Atsuo K (2006) In situ surface-enhanced Raman scattering spectroelectrochemistry of oxygen species. Roy Soc Chem Faraday Dis 132:95–109.  https://doi.org/10.1039/b506197kCrossRefGoogle Scholar
  24. 24.
    Amalric-Popescu D, Herrmann JM, Ensuque A, Bozon-Verduraz F (2001) Nanosized tin dioxide: spectroscopic (UV-vis, NIR, EPR) and electrical conductivity studies. Phys Chem Chem Phys 3:2522–2530.  https://doi.org/10.1039/B100553GCrossRefGoogle Scholar
  25. 25.
    Williams DE (1999) Semiconducting oxides as gas-sensitive resistors. Sens Actuators B 57:1–16.  https://doi.org/10.1016/S0925-4005(99)00133-1CrossRefGoogle Scholar
  26. 26.
    Bârsan N, Weimar U (2003) Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J Phys Condens Matter 15:R813–R839.  https://doi.org/10.1088/0953-8984/15/20/201CrossRefGoogle Scholar
  27. 27.
    Shin J, Choi SJ, Lee I, Youn DY, Park CO, Lee JH, Tuller HL, Kim ID (2013) Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv Funct Mater 23:2357–2367.  https://doi.org/10.1002/adfm.201202729CrossRefGoogle Scholar
  28. 28.
    Kim HJ, Lee JH (2014) Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens Actuators B 192:607–627.  https://doi.org/10.1016/j.snb.2013.11.005CrossRefGoogle Scholar
  29. 29.
    Fergus JW (2007) Perovskite oxides for semiconductor-based gas sensors. Sens Actuators B 123:1169–1179.  https://doi.org/10.1016/j.snb.2006.10.051CrossRefGoogle Scholar
  30. 30.
    Yang D (2011) Nanocomposite films for gas sensing. In: Reddy B (ed) Advances in nanocomposites-synthesis, characterization and industrial applications. InTech, Ch., Rijeka, Croatia, pp 857–882Google Scholar
  31. 31.
    Choi SW, Park JY, Kim SS (2009) Synthesis of SnO2–ZnO core-shell nanofibers via a novel two-step process and their gas sensing properties. Nanotechnology 20:465603.  https://doi.org/10.1088/0957-4484/20/46/465603CrossRefGoogle Scholar
  32. 32.
    Korotcenkov G, Cho BK (2017) Metal oxide composites in conductometric gas sensors: achievements and challenges. Sens Actuators B 244:182–210.  https://doi.org/10.1016/j.snb.2016.12.117CrossRefGoogle Scholar
  33. 33.
    Gurlo A (2011) Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3:154–165.  https://doi.org/10.1039/c0nr00560fCrossRefGoogle Scholar
  34. 34.
    Ushio Y, Miyayama M, Yanagida H (1994) Effect of interface states on gas-sensing properties of a CuO/ZnO thin-film heterojunction. Sens Actuators B 17:221–226.  https://doi.org/10.1016/0925-4005(93)00878-3CrossRefGoogle Scholar
  35. 35.
    Muller SA, Degler D, Feldmann C, Turk M, Moos R, Fink K, Studt F, Gerthsen D, Barsan N, Grunwaldt JD (2017) Exploiting synergies in catalysis and gas sensing using noble metal-loaded oxide composites. ChemCatChem 10:864–880.  https://doi.org/10.1002/cctc.201701545CrossRefGoogle Scholar
  36. 36.
    Heidari EK, Zamani C, Marzbanrad E, Raissi B, Nazarpour S (2010) WO3-based NO2 sensors fabricated through low frequency AC electrophoretic deposition. Sens Actuators B 146:165–170.  https://doi.org/10.1016/j.snb.2010.01.073CrossRefGoogle Scholar
  37. 37.
    Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S (2011) Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens Actuators B 160:580–591.  https://doi.org/10.1016/j.snb.2011.08.032CrossRefGoogle Scholar
  38. 38.
    Schütze A, Baur T, Leidinger M, Reimringer W, Jung R, Conrad T, Sauerwald T (2017) Highly sensitive and selective VOC sensor systems based on semiconductor gas sensors: how to? Environments 4:20–32.  https://doi.org/10.3390/environments4010020CrossRefGoogle Scholar
  39. 39.
    Kim SJ, Choi SJ, Jang JS, Cho HJ, Koo WT, Tuller HL, Kim ID (2017) Exceptional high-performance of Pt-based bimetallic catalysts for exclusive detection of exhaled biomarkers. Adv Mater 1700737.  https://doi.org/10.1002/adma.201700737CrossRefGoogle Scholar
  40. 40.
    Wang Y, Li YX, Yang JL, Ruan J, Sun CJ (2016) Microbial volatile organic compounds and their application in microorganism identification in foodstuff. TrAC Trends Anal Chem 78:1–16.  https://doi.org/10.1016/j.trac.2015.08.010CrossRefGoogle Scholar
  41. 41.
    Zhu YH, Zhao Y, Ma JH, Cheng XW, Xie J, Xu PC, Liu HQ, Liu HP, Zhang HJ, Wu MH, Elzatahry AA, Alghamdi A, Deng YH, Zhao DY (2017) Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J Am Chem Soc 139:10365–10373.  https://doi.org/10.1021/jacs.7b04221CrossRefGoogle Scholar
  42. 42.
    Fine GF, Cavanagh LM, Afonja A, Binions R (2010) Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 10:5469–5502.  https://doi.org/10.3390/s100605469CrossRefGoogle Scholar
  43. 43.
    Sun Y, Liu S, Meng F, Liu J, Jin Z, Kong L, Liu J (2012) Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12:2610–2631.  https://doi.org/10.3390/s120302610CrossRefGoogle Scholar
  44. 44.
    Kanan SM, El-Kadri OM, Abu-Yousef IA, Kanan MC (2009) Semiconducting metal oxide based sensors for selective gas pollutant detection. Sensors 9:8158–8196.  https://doi.org/10.3390/s91008158CrossRefGoogle Scholar
  45. 45.
    Arafat MM, Dinan B, Akbar SA, Haseeb AS (2012) Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12:7207–7258.  https://doi.org/10.3390/s120607207CrossRefGoogle Scholar
  46. 46.
    Tomchenko AA, Harmer GP, Marquis BT, Allen JW (2003) Semiconducting metal oxide sensor array for the selective detection of combustion gases. Sens Actuators B 93:126–134.  https://doi.org/10.1016/S0925-4005(03)00240-5CrossRefGoogle Scholar
  47. 47.
    Afzal A, Cioffi N, Sabbatini L, Torsi L (2012) NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives. Sens Actuators B 171–172:25–42.  https://doi.org/10.1016/j.snb.2012.05.026CrossRefGoogle Scholar
  48. 48.
    Huang J, Wan Q (2009) Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors 9:9903–9924.  https://doi.org/10.3390/s91209903CrossRefGoogle Scholar
  49. 49.
    Pinna N, Neri G, Antonietti M, Niederberger M (2004) Nonaqueous synthesis of nanocrystalline semiconducting metal oxides for gas sensing. Angew Chem Int Ed 43:4345–4349.  https://doi.org/10.1002/anie.200460610CrossRefGoogle Scholar
  50. 50.
    Concina I, Ibupoto ZH, Vomiero A (2017) Semiconducting metal oxide nanostructures for water splitting and photovoltaics. Adv Energy Mater 7:1700706.  https://doi.org/10.1002/aenm.201700706CrossRefGoogle Scholar
  51. 51.
    Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36–50.  https://doi.org/10.1002/smll.200500261CrossRefGoogle Scholar
  52. 52.
    Artzi-Gerlitz R, Benkstein KD, Lahr DL, Hertz JL, Montgomery CB, Bonevich JE, Semancik S, Tarlov MJ (2009) Fabrication and gas sensing performance of parallel assemblies of metal oxide nanotubes supported by porous aluminum oxide membranes. Sens Actuators B 136:257–264.  https://doi.org/10.1016/j.snb.2008.10.056CrossRefGoogle Scholar
  53. 53.
    Chen X, Sun K, Zhang E, Zhang N (2013) 3D porous micro/nanostructured interconnected metal/metal oxide electrodes for high-rate lithium storage. RSC Adv 3:432–437.  https://doi.org/10.1039/c2ra21733cCrossRefGoogle Scholar
  54. 54.
    Ming J, Wu Y, Park JB, Lee JK, Zhao F, Sun YK (2013) Assembling metal oxide nanocrystals into dense, hollow, porous nanoparticles for lithium-ion and lithium-oxygen battery application. Nanoscale 5:10390–10396.  https://doi.org/10.1039/c3nr02384bCrossRefGoogle Scholar
  55. 55.
    Zhou X, Cheng X, Zhu Y, Elzatahry AA, Alghamdi A, Deng Y, Zhao D (2018) Ordered porous metal oxide semiconductors for gas sensing. Chin Chem Lett 29:405–416.  https://doi.org/10.1016/j.cclet.2017.06.021CrossRefGoogle Scholar
  56. 56.
    Delaney P, McManamon C, Hanrahan JP, Copley MP, Holmes JD, Morris MA (2011) Development of chemically engineered porous metal oxides for phosphate removal. J Hazard Mater 185:382–391.  https://doi.org/10.1016/j.jhazmat.2010.08.128CrossRefGoogle Scholar
  57. 57.
    Ren Y, Ma Z, Bruce PG (2012) Ordered mesoporous metal oxides: synthesis and applications. Chem Soc Rev 41:4909–4927.  https://doi.org/10.1039/c2cs35086fCrossRefGoogle Scholar
  58. 58.
    Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10:2088–2106.  https://doi.org/10.3390/s100302088CrossRefGoogle Scholar
  59. 59.
    Yoo KS, Park SH, Kang JH (2005) Nano-grained thin-film indium tin oxide gas sensors for H2 detection. Sens Actuators B 108:159–164.  https://doi.org/10.1016/j.snb.2004.12.105CrossRefGoogle Scholar
  60. 60.
    Hübner M, Simion CE, Tomescu-Stănoiu A, Pokhrel S, Bârsan N, Weimar U (2011) Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sens Actuators B 153:347–353.  https://doi.org/10.1016/j.snb.2010.10.046CrossRefGoogle Scholar
  61. 61.
    Lupan O, Ursaki VV, Chai G, Chow L, Emelchenko GA, Tiginyanu IM, Gruzintsev AN, Redkin AN (2010) Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature. Sens Actuators B 144:56–66.  https://doi.org/10.1016/j.snb.2009.10.038CrossRefGoogle Scholar
  62. 62.
    Wagner T, Waitz T, Roggenbuck J, Fröba M, Kohl CD, Tiemann M (2007) Ordered mesoporous ZnO for gas sensing. Thin Solid Films 515:8360–8363.  https://doi.org/10.1016/j.tsf.2007.03.021CrossRefGoogle Scholar
  63. 63.
    Szilágyi IM, Saukko S, Mizsei J, Tóth AL, Madarász J, Pokol G (2010) Gas sensing selectivity of hexagonal and monoclinic WO3 to H2S. Solid State Sci 12:1857–1860.  https://doi.org/10.1016/j.solidstatesciences.2010.01.019CrossRefGoogle Scholar
  64. 64.
    Brezesinski T, Rohlfing DF, Sallard S, Antonietti M, Smarsly BM (2006) Highly crystalline WO3 thin films with ordered 3D mesoporosity and improved electrochromic performance. Small 2:1203–1211.  https://doi.org/10.1002/smll.200600176CrossRefGoogle Scholar
  65. 65.
    Rothschild A, Komem Y (2004) The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J Appl Phys 95:6374–6380.  https://doi.org/10.1063/1.1728314CrossRefGoogle Scholar
  66. 66.
    Cheng JP, Wang J, Li QQ, Liu HG, Li Y (2016) A review of recent developments in tin dioxide composites for gas sensing application. J Ind Eng Chem 44:1–22.  https://doi.org/10.1016/j.jiec.2016.08.008CrossRefGoogle Scholar
  67. 67.
    Cheng JP, Liu L, Zhang J, Liu F, Zhang XB (2014) Influences of anion exchange and phase transformation on the supercapacitive properties of α-Co(OH)2. J Electroanal Chem 722–723:23–31.  https://doi.org/10.1016/j.jelechem.2014.03.019CrossRefGoogle Scholar
  68. 68.
    Yang X, Cao C, Hohn K, Erickson L, Maghirang R, Hamal D, Klabunde K (2007) Highly visible-light active C- and V-doped TiO2 for degradation of acetaldehyde. J Catal 252:296–302.  https://doi.org/10.1016/j.jcat.2007.09.014CrossRefGoogle Scholar
  69. 69.
    Waitz T, Becker B, Wagner T, Sauerwald T, Kohl CD, Tiemann M (2010) Ordered nanoporous SnO2 gas sensors with high thermal stability. Sens Actuators B 150:788–793.  https://doi.org/10.1016/j.snb.2010.08.001CrossRefGoogle Scholar
  70. 70.
    Zhou X, Cao Q, Huang H, Yang P, Hu Y (2003) Study on sensing mechanism of CuO–SnO2 gas sensors. Mater Sci Eng 99:44–47.  https://doi.org/10.1016/S0921-5107(02)00501-9CrossRefGoogle Scholar
  71. 71.
    Choi KS, Park S, Chang SP (2017) Enhanced ethanol sensing properties based on SnO2 nanowires coated with Fe2O3 nanoparticles. Sens Actuators B 238:871–879.  https://doi.org/10.1016/j.snb.2016.07.146CrossRefGoogle Scholar
  72. 72.
    Liu H, Chen S, Wang G, Qiao SZ (2013) Ordered mesoporous core/shell SnO2/C nanocomposite as high-capacity anode material for lithium-ion batteries. Chem Eur J 19:16897–16901.  https://doi.org/10.1002/chem.201303400CrossRefGoogle Scholar
  73. 73.
    Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A, Sberveglieri G (2009) Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors. Prog Mater Sci 54:1–67.  https://doi.org/10.1016/j.pmatsci.2008.06.003CrossRefGoogle Scholar
  74. 74.
    Batzill M, Diebold U (2007) Surface studies of gas sensing metal oxides. Phys Chem Chem Phys 9:2307–2318.  https://doi.org/10.1039/b617710gCrossRefGoogle Scholar
  75. 75.
    Yang J, Hidajat K, Kawi S (2008) Synthesis of nano-SnO2/SBA-15 composite as a highly sensitive semiconductor oxide gas sensor. Mater Lett 62:1441–1443.  https://doi.org/10.1016/j.matlet.2007.08.081CrossRefGoogle Scholar
  76. 76.
    Zhao X, Zhou R, Hua Q, Dong L, Yu R, Pan C (2015) Recent progress in ohmic/Schottky-contacted ZnO nanowire sensors. J Nanomater 2015:1–20.  https://doi.org/10.1155/2015/854094CrossRefGoogle Scholar
  77. 77.
    Zhou X, Lee S, Xu Z, Yoon J (2015) Recent progress on the development of chemosensors for gases. Chem Rev 115:7944–8000.  https://doi.org/10.1021/cr500567rCrossRefGoogle Scholar
  78. 78.
    Zakrzewska K (2004) Gas sensing mechanism of TiO2-based thin films. Vacuum 74:335–338.  https://doi.org/10.1016/j.vacuum.2003.12.152CrossRefGoogle Scholar
  79. 79.
    Jiménez I, Arbiol J, Dezanneau G, Cornet A, Morante JR (2003) Crystalline structure, defects and gas sensor response to NO2 and H2S of tungsten trioxide nanopowders. Sens Actuators B 93:475–485.  https://doi.org/10.1016/S0925-4005(03)00198-9CrossRefGoogle Scholar
  80. 80.
    Zhang YH, Chen YB, Zhou KG, Liu CH, Zeng J, Zhang HL, Peng Y (2009) Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20:185504–185511.  https://doi.org/10.1088/0957-4484/20/18/185504CrossRefGoogle Scholar
  81. 81.
    Schmidt-Mende L, MacManus-Driscoll JL (2007) ZnO-nanostructures, defects, and devices. Mater Today 10:40–48.  https://doi.org/10.1016/S1369-7021(07)70078-0CrossRefGoogle Scholar
  82. 82.
    Adepalli KK, Kelsch M, Merkle R, Maier J (2013) Influence of line defects on the electrical properties of single crystal TiO2. Adv Funct Mater 23:1798–1806.  https://doi.org/10.1002/adfm.201202256CrossRefGoogle Scholar
  83. 83.
    Nisar J, Topalian Z, De Sarkar A, Osterlund L, Ahuja R (2013) TiO2-based gas sensor: a possible application to SO2. ACS Appl Mater Interfaces 5:8516–8522.  https://doi.org/10.1021/am4018835CrossRefGoogle Scholar
  84. 84.
    Kim K, Lee HB, Johnson RW, Tanskanen JT, Liu N, Kim MG, Pang C, Ahn C, Bent SF, Bao Z (2014) Selective metal deposition at graphene line defects by atomic layer deposition. Nat Commun 5:4781–4789.  https://doi.org/10.1038/ncomms5781CrossRefGoogle Scholar
  85. 85.
    Ahn MW, Park KS, Heo JH, Park JG, Kim DW, Choi KJ, Lee JH, Hong SH (2008) Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl Phys Lett 93:263103–263106.  https://doi.org/10.1063/1.3046726CrossRefGoogle Scholar
  86. 86.
    Rothschild A, Litzelman SJ, Tuller HL, Menesklou W, Schneider T, Ivers-Tiffée E (2005) Temperature-independent resistive oxygen sensors based on SrTi1−xFexO3−δ solid solutions. Sens Actuators B 108:223–230.  https://doi.org/10.1016/j.snb.2004.09.044CrossRefGoogle Scholar
  87. 87.
    Zaleska A (2008) Doped-TiO2: a review. Recent Pat Eng 2:157–164.  https://doi.org/10.2174/187221208786306289CrossRefGoogle Scholar
  88. 88.
    Li SS, Xia JB (2007) Electronic states of a hydrogenic donor impurity in semiconductor nano-structures. Phys Lett A 366:120–123.  https://doi.org/10.1016/j.physleta.2007.02.028CrossRefGoogle Scholar
  89. 89.
    Waldrop JR, Grant RW (1979) Semiconductor heterojunction interfaces: nontransitivity of energy-band discontiuities. Phys Rev Lett 43:1686–1689.  https://doi.org/10.1103/physrevlett.43.1686CrossRefGoogle Scholar
  90. 90.
    Anothainart K, Burgmair M, Karthigeyan A, Zimmer M, Eisele I (2003) Light enhanced NO2 gas sensing with tin oxide at room temperature: conductance and work function measurements. Sens Actuators B 93:580–584.  https://doi.org/10.1016/S0925-4005(03)00220-xCrossRefGoogle Scholar
  91. 91.
    Heyd J, Peralta JE, Scuseria GE, Martin RL (2005) Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J Chem Phys 123:174101–174109.  https://doi.org/10.1063/1.2085170CrossRefGoogle Scholar
  92. 92.
    Sadeghi E (2009) Impurity binding energy of excited states in spherical quantum dot. Phys E 41:1319–1322.  https://doi.org/10.1016/j.physe.2009.03.004CrossRefGoogle Scholar
  93. 93.
    Zhuravlev MY, Tsymbal EY, Vedyayev AV (2005) Impurity-assisted interlayer exchange coupling across a tunnel barrier. Phys Rev Lett 94:026806–026809.  https://doi.org/10.1103/physrevlett.94.026806
  94. 94.
    Wehling TO, Katsnelson MI, Lichtenstein AI (2009) Adsorbates on graphene: impurity states and electron scattering. Chem Phys Lett 476:125–134.  https://doi.org/10.1016/j.cplett.2009.06.005CrossRefGoogle Scholar
  95. 95.
    White SR, Sham LJ (1981) Electronic properties of flat-band semiconductor heterostructures. Phys Rev Lett 47: 879–882.  https://doi.org/10.1103/physrevlett.47.879CrossRefGoogle Scholar
  96. 96.
    Langer JM, Heinrich H (1985) Deep-level impurities: a possible guide to prediction of band-edge discontinuities in semiconductor heterojunctions. Phys Rev Lett 55:1414–1417.  https://doi.org/10.1103/physrevlett.55.1414CrossRefGoogle Scholar
  97. 97.
    Basu S, Bhattacharyya P (2012) Recent developments on graphene and graphene oxide based solid state gas sensors. Sens Actuators B 173:1–21.  https://doi.org/10.1016/j.snb.2012.07.092CrossRefGoogle Scholar
  98. 98.
    Bittencourt C, Felten A, Espinosa EH, Ionescu R, Llobet E, Correig X, Pireaux JJ (2006) WO3 films modified with functionalised multi-wall carbon nanotubes: morphological, compositional and gas response studies. Sens Actuators B 115:33–41.  https://doi.org/10.1016/j.snb.2005.07.067CrossRefGoogle Scholar
  99. 99.
    Cui S, Pu H, Wells SA, Wen Z, Mao S, Chang J, Hersam MC, Chen J (2015) Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat Commun 6:8632–8640.  https://doi.org/10.1038/ncomms9632CrossRefGoogle Scholar
  100. 100.
    de Lacy Costello BP, Ledochowski M, Ratcliffe NM (2013) The importance of methane breath testing: a review. J Breath Res 7:024001–024009.  https://doi.org/10.1088/1752-7155/7/2/024001CrossRefGoogle Scholar
  101. 101.
    Dong C, Liu X, Han B, Deng S, Xiao X, Wang Y (2016) Nonaqueous synthesis of Ag-functionalized In2O3/ZnO nanocomposites for highly sensitive formaldehyde sensor. Sens Actuators B 224:193–200.  https://doi.org/10.1016/j.snb.2015.09.107CrossRefGoogle Scholar
  102. 102.
    Comini E (2006) Metal oxide nano-crystals for gas sensing. Anal Chim Acta 568:28–40.  https://doi.org/10.1016/j.aca.2005.10.069CrossRefGoogle Scholar
  103. 103.
    da Silva LF, M’Peko JC, Catto AC, Bernardini S, Mastelaro VR, Aguir K, Ribeiro C, Longo E (2017) UV-enhanced ozone gas sensing response of ZnO–SnO2 heterojunctions at room temperature. Sens Actuators B 240:573–579.  https://doi.org/10.1016/j.snb.2016.08.158CrossRefGoogle Scholar
  104. 104.
    Dandeneau CS, Jeon YH, Shelton CT, Plant TK, Cann DP, Gibbons BJ (2009) Thin film chemical sensors based on p-CuO/n-ZnO heterocontacts. Thin Solid Films 517:4448–4454.  https://doi.org/10.1016/j.tsf.2009.01.054CrossRefGoogle Scholar
  105. 105.
    Dhawale DS, Salunkhe RR, Patil UM, Gurav KV, More AM, Lokhande CD (2008) Room temperature liquefied petroleum gas (LPG) sensor based on p-polyaniline/n-TiO2 heterojunction. Sens Actuators B 134:988–992.  https://doi.org/10.1016/j.snb.2008.07.003CrossRefGoogle Scholar
  106. 106.
    Huang H, Gong H, Chow CL, Guo J, White TJ, Tse MS, Tan OK (2011) Low-temperature growth of SnO2 nanorod arrays and tunable n–p–n sensing response of a ZnO/SnO2 heterojunction for exclusive hydrogen sensors. Adv Funct Mater 21:2680–2686.  https://doi.org/10.1002/adfm.201002115CrossRefGoogle Scholar
  107. 107.
    Ju D, Xu H, Xu Q, Gong H, Qiu Z, Guo J, Zhang J, Cao B (2015) High triethylamine-sensing properties of NiO/SnO2 hollow sphere P–N heterojunction sensors. Sens Actuators B 215:39–44.  https://doi.org/10.1016/j.snb.2015.03.015CrossRefGoogle Scholar
  108. 108.
    Ma L, Fan H, Tian H, Fang J, Qian X (2016) The n-ZnO/n-In2O3 heterojunction formed by a surface-modification and their potential barrier-control in methanal gas sensing. Sens Actuators B 222:508–516.  https://doi.org/10.1016/j.snb.2015.08.085CrossRefGoogle Scholar
  109. 109.
    Miller DR, Akbar SA, Morris PA (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuators B 204:250–272.  https://doi.org/10.1016/j.snb.2014.07.074CrossRefGoogle Scholar
  110. 110.
    O’Donnell KP, Chen X (1991) Temperature dependence of semiconductor band gaps. Appl Phys Lett 58:2924–2926.  https://doi.org/10.1063/1.104723CrossRefGoogle Scholar
  111. 111.
    Han D, Zhai L, Gu F, Wang Z (2018) Highly sensitive NO2 gas sensor of ppb-level detection based on In2O3 nanobricks at low temperature. Sens Actuators B 262:655–663.  https://doi.org/10.1016/j.snb.2018.02.052CrossRefGoogle Scholar
  112. 112.
    Xing X, Xiao X, Wang L, Wang Y (2017) Highly sensitive formaldehyde gas sensor based on hierarchically porous Ag-loaded ZnO heterojunction nanocomposites. Sens Actuators B 247:797–806.  https://doi.org/10.1016/j.snb.2017.03.077CrossRefGoogle Scholar
  113. 113.
    Shendage SS, Patil VL, Vanalakar SA, Patil SP, Harale NS, Bhosale JL, Kim JH, Patil PS (2017) Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens Actuators B 240:426–433.  https://doi.org/10.1016/j.snb.2016.08.177CrossRefGoogle Scholar
  114. 114.
    Liu J, Wang T, Wang B, Sun P, Yang Q, Liang X, Song H, Lu G (2017) Highly sensitive and low detection limit of ethanol gas sensor based on hollow ZnO/SnO2 spheres composite material. Sens Actuators B 245:551–559.  https://doi.org/10.1016/j.snb.2017.01.148CrossRefGoogle Scholar
  115. 115.
    Li Y, Chen N, Deng D, Xing X, Xiao X, Wang Y (2017) Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Sens Actuators B 238:264–273.  https://doi.org/10.1016/j.snb.2016.07.051CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of ChemistryFudan UniversityShanghaiChina

Personalised recommendations