Advertisement

Fuzzy Numbers and Fuzzy Optimization

  • Sahidul Islam
  • Wasim Akram Mandal
Chapter
Part of the Forum for Interdisciplinary Mathematics book series (FFIM)

Abstract

A fuzzy number is a quantity whose value is imprecise rather than exact as is the case with single-valued number.

References

  1. K.T. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications (Springer Physica Verlag, Heidelberg, 1999)CrossRefGoogle Scholar
  2. H. Becker, H.R. Tizhoosh, Fuzzy Image Processing in Handbook of Computer Vision and Applications, vol. 2. Academic Press (1999)Google Scholar
  3. R.E. Bellman, L.A. Zadeh, Decision-making in a fuzzy environment. Manage. Sci. 17, 141–164 (1970)MathSciNetCrossRefGoogle Scholar
  4. N.N. Karnik, J.M. Mendel, Q. Liang, Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7(4), 643–658 (1999)CrossRefGoogle Scholar
  5. G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall (1995)Google Scholar
  6. Q. Liang, J.M. Mendel, Interval Type-2 Fuzzy Logic Systems: Theory and Design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)CrossRefGoogle Scholar
  7. B. Liu, Uncertainty Theory, 4th edn. (Springer, Berlin, 2015)zbMATHGoogle Scholar
  8. J.M. Mendel, R.I.B. John, Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)CrossRefGoogle Scholar
  9. Z.S. Xu, M.M. Xia, Distance and similarity measures for hesitant fuzzy sets. Inform. Sci. 181(11), 2128–2138 (2011)MathSciNetCrossRefGoogle Scholar
  10. R.R. Yager, Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 22(4), 958–965 (2014).  https://doi.org/10.1109/TFUZZ.2013.2278989CrossRefGoogle Scholar
  11. J. Ye, Multi-criteria decision making method using the correlation coefficient under single-value neutrosophic environment. Int. J. Gen. Syst. 42(4), 386–394 (2013)MathSciNetCrossRefGoogle Scholar
  12. H.-J. Zimmermann, Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1, 45–55 (1978)MathSciNetCrossRefGoogle Scholar
  13. H.J. Zimmermann, Application of fuzzy set theory to mathematical programming. Inf. Sci. 36, 29–58 (1985)MathSciNetCrossRefGoogle Scholar
  14. H.J. Zimmermann, Methods and applications of fuzzy mathematical programming, in An introduction to Fuzzy Logic Application in Intelligent Systems, ed. by R.R. Yager, L.A. Zadeh. Kluwer Publishers, Boston (1992), 97–120CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sahidul Islam
    • 1
  • Wasim Akram Mandal
    • 2
  1. 1.Department of MathematicsUniversity of KalyaniKalyani, NadiaIndia
  2. 2.Beldanga D.H. Senior MadrasahBeldanga, MurshidabadIndia

Personalised recommendations