Geometric Programming Problem Under Uncertainty

  • Sahidul IslamEmail author
  • Wasim Akram Mandal
Part of the Forum for Interdisciplinary Mathematics book series (FFIM)


Uncertainty theory is one of the relatively new branches of uncertain mathematics presented by Liu (2015) and in this way studied by many researchers. Now uncertainty theory has become a part of mathematics for modeling belief degrees.


  1. B. Liu, Some research problems in uncertainty theory. J. Uncertain Syst. 3(1), 3–10 (2009)Google Scholar
  2. B. Liu: Uncertainty Theory, 4th Edition. (Springer-Verlag, Berlin, 2015).zbMATHGoogle Scholar
  3. B. Liu, X. Chen, Uncertain multiobjective programming and uncertain goal programming. J. Uncertain. Anal. Appl. 3, 10 (2015).
  4. T. Madjid et al., Solving geometric programming problems with normal, linear and zigzag uncertainty. J. Optim. Theory Appl. (2016) 170, 243–265 (2015)Google Scholar
  5. W.A. Mandal, Int. J. Interact. Des. Manuf. (2018).
  6. W.A. Mandal, S. Islam, Multi-objective geometric programming problem under uncertainty. Oper. Res. Decis. 27(4), 85–109 (2018)Google Scholar
  7. K.A. Miettinen, Posteriori methods, in Nonlinear Multiobjective Optimization. Boston, MA: Springer (1998). ISBN 978-1-4613-7544-9. Scholar
  8. S.H. Nasseri, Z. Alizadeh, Optimized solution of a two-bar truss nonlinear problem using fuzzy geometric programming. J. Nonlinear Anal. Appl. 1–9 (2014) Scholar
  9. J. Peng, K. Yao, A new option pricing model for stocks in uncertainty markets. Int. J. Oper. Res. 8(2), 18–26 (2011)MathSciNetGoogle Scholar
  10. L.A. Schmit, Structural synthesis- its genesis and development. AIAA J. 119(10), 1249–1263 (1981).CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of KalyaniKalyani, NadiaIndia
  2. 2.Beldanga D.H. Senior MadrasahBeldanga, MurshidabadIndia

Personalised recommendations