Advertisement

Distributed Parameter Models

  • Keum-Shik HongEmail author
  • Umer Hameed Shah
Chapter
Part of the Advances in Industrial Control book series (AIC)

Abstract

This chapter discusses modeling of crane systems as distributed parameter systems.

References

  1. Alli H, Singh T (1999) Passive control of overhead cranes. J Vib Control 5(3):443–459CrossRefGoogle Scholar
  2. d’Andrea-Novel B, Boustany F, Conrad F et al (1994) Feedback stabilization of a hybrid PDE-ODE system: application to an overhead crane. Math Control Signal Syst 7(1):1–22Google Scholar
  3. Hannan MA, Bai W (2016) Analysis of nonlinear dynamics of fully submerged payload hanging from offshore crane vessel. Ocean Eng 128:132–146CrossRefGoogle Scholar
  4. He W, Zhang S, Ge SS (2014) Adaptive control of a flexible crane system with the boundary output constraint. IEEE Trans Ind Electron 61(8):4126–4133CrossRefGoogle Scholar
  5. How BVE, Ge SS, Choo YS (2009) Active control of flexible marine risers. J Sound Vibr 320(4–5):758–776CrossRefGoogle Scholar
  6. How BVE, Ge SS, Choo YS (2011) Control of coupled vessel, crane, cable, and payload dynamics for subsea installation operations. IEEE Trans Control Syst Technol 19(1):208–220CrossRefGoogle Scholar
  7. Kim CS, Hong K-S (2009) Boundary control of container cranes from the perspective of controlling an axially moving string system. Int J Control Autom Syst 7(3):437–445CrossRefGoogle Scholar
  8. Marzouk O, Nayfeh AH, Akhtar I et al (2007) Modeling steady-state and transient forces on a cylinder. J Vib Control 13(7):1065–1091CrossRefGoogle Scholar
  9. Morison JR, O’Brien MP, Johnson JW et al (1950) The force exerted by surface waves on piles. Pet Trans 189:149–157Google Scholar
  10. Ngo QH, Hong K-S (2009) Skew control of a quay container crane. J Mech Sci Technol 23(12):3332–3339CrossRefGoogle Scholar
  11. O’Connor WJ (2003) A gantry crane problem solved. J Dyn Syst Meas Control-Trans ASME 125(4):569–576CrossRefGoogle Scholar
  12. Sano H (2008) Boundary stabilization of hyperbolic systems related to overhead cranes. IMA J Math Control Inf 25(3):353–366MathSciNetCrossRefGoogle Scholar
  13. Shah UH, Hong K-S (2018) Active vibration control of a flexible rod moving in water: application to nuclear refueling machines. Automatica 93:231–243MathSciNetCrossRefGoogle Scholar
  14. Shah UH, Hong K-S, Choi S-H (2017) Open-loop vibration control of an underwater system: application to refueling machine. IEEE-ASME Trans Mechatron 22(4):622–1632CrossRefGoogle Scholar
  15. Williamson CHK, Govardhan R (2004) Vortex-induced vibrations. Annu Rev Fluid Mech 36:413–455MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringPusan National UniversityBusanKorea (Republic of)

Personalised recommendations