Advertisement

Lumped Mass Models of Mobile Cranes

  • Keum-Shik HongEmail author
  • Umer Hameed Shah
Chapter
Part of the Advances in Industrial Control book series (AIC)

Abstract

In the previous chapters, we have discussed the crane systems with a fixed base, which are used at construction sites (e.g., tower cranes), manufacturing/power plants (e.g., overhead cranes), ship-building factories (e.g., gantry cranes), and seaports (e.g., container cranes), for handling heavy loads.

References

  1. Abdel-Rahman EM, Nayfeh AH, Masoud ZN (2003) Dynamics and control of cranes: a review. J Vib Control 9(7):863–908zbMATHGoogle Scholar
  2. Chin C, Nayfeh AH, Abdel-Rahman E (2001a) Nonlinear dynamics of a boom crane. J Vib Control 7(2):199–220CrossRefGoogle Scholar
  3. Chin CM, Nayfeh AH, Mook DT (2001b) Dynamics and control of ship-mounted cranes. J Vib Control 7(6):891–904CrossRefGoogle Scholar
  4. Ghigliazza RM, Holmes P (2002) On the dynamics of cranes, or spherical pendula with moving supports. Int J Non-Linear Mech 37(7):1211–1221CrossRefGoogle Scholar
  5. Hong K-S, Ngo QH (2012) Dynamics of the container crane on a mobile harbor. Ocean Eng 53:16–24CrossRefGoogle Scholar
  6. Klosinski J (2005) Swing-free stop control of the slewing motion of a mobile crane. Control Eng Practice 13(4):451–460CrossRefGoogle Scholar
  7. Kuchler S, Mahl T, Neupert J et al (2011) Active control for an offshore crane using prediction of the vessel’s motion. IEEE-ASME Trans Mechatron 16(2):297–309CrossRefGoogle Scholar
  8. Maczynski A, Wojciech S (2003) Dynamics of a mobile crane and optimisation of the slewing motion of its upper structure. Nonlinear Dyn 32(3):259–290CrossRefGoogle Scholar
  9. Miles J (1984) Resonant motion of a spherical pendulum. Phys D 11(3):309–323MathSciNetCrossRefGoogle Scholar
  10. Ngo QH, Hong K-S (2009) Skew control of a quay container crane. J Mech Sci Technol 23(12):3332–3339CrossRefGoogle Scholar
  11. Perig AV, Stadnik AN, Deriglazov AI (2014a) Spherical pendulum small oscillations for slewing crane motion. Sci Worl J.  https://doi.org/10.1155/2014/451804CrossRefGoogle Scholar
  12. Perig AV, Stadnik AN, Deriglazov AI et al (2014b) 3 DOF spherical pendulum oscillations with a uniform slewing pivot center and a small angle assumption. Shock Vib. https://dx.doi.org/10.1155/2014/203709
  13. Posiadala B (1997) Influence of crane support system on motion of the lifted load. Mech Mach Theory 32(1):9–20CrossRefGoogle Scholar
  14. Posiadala B, Skalmierski B, Tomski L (1990) Motion of the lifted load brought by a kinematic forcing of the crane telescopic boom. Mech Mach Theory 25(5):547–556CrossRefGoogle Scholar
  15. Schellin TE, Jiang T, Sharma SD (1991) Crane ship response to wave groups. J Offshore Mech Arct Eng Trans ASME 113:211–218CrossRefGoogle Scholar
  16. Witz JA (1995) Parametric excitation of crane loads in moderate sea states. Ocean Eng 22(4):411–420CrossRefGoogle Scholar
  17. Yurchenko D, Alevras P (2014) Stability, control and reliability of a ship crane payload motion. Probab Eng Mech 38:173–179CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringPusan National UniversityBusanKorea (Republic of)

Personalised recommendations