Advertisement

Lumped Mass Models of Rotary Cranes

  • Keum-Shik HongEmail author
  • Umer Hameed Shah
Chapter
Part of the Advances in Industrial Control book series (AIC)

Abstract

As discussed in Chap.  1, rotary cranes comprise tower cranes and boom cranes. In this chapter, we will discuss the dynamics of both the tower and boom crane systems. The operation of a tower crane consists of a slew motion of the jib, a translational motion of the trolley along the length of the jib, and a hoisting motion of the payload. The operations of a boom crane include slewing and luffing movements of the boom together with a hoisting motion of the payload (Ito et al. 1978).

References

  1. Agostini MJ, Parker GG, Schaub H et al (2003) Generating swing-suppressed maneuvers for crane systems with rate saturation. IEEE Trans Contr Syst Technol 11(4):471–481CrossRefGoogle Scholar
  2. Blackburn D, Lawrence J, Danielson J et al (2010a) Radial-motion assisted command shapers for nonlinear tower crane rotational slewing. Control Eng Practice 18(5):523–531CrossRefGoogle Scholar
  3. Blackburn D, Singhose W, Kitchen J et al (2010b) Command shaping for nonlinear crane dynamics. J Vib Control 16(4):1–25CrossRefGoogle Scholar
  4. Blajer W, Kolodziejczyk K (2011) Improved DAE formulation for inverse dynamics simulation of cranes. Multibody Syst Dyn 25(2):131–143CrossRefGoogle Scholar
  5. Ito H, Senda Y, Fujimoto H (1978) Dynamic behavior of a load lifted by a mobile construction-type crane. 4 study on boom hoist motion, ETC. Bull JSME Jpn Soc Mech Eng 21(154):600–608CrossRefGoogle Scholar
  6. Jerman B, Podrzaj P, Kramar J (2004) An investigation of slewing-crane dynamics during slewing motion—development and verification of a mathematical model. Int J Mech Sci 46(5):729–750CrossRefGoogle Scholar
  7. Marinovic I, Sprecic D, Jerman B (2012) A slewing crane payload dynamics. The Vjesn 19(4):907–916Google Scholar
  8. Matusko J, Iles S, Kolonic F et al (2015) Control of 3D tower crane based on tensor product model transformation with neural friction compensation. Asian J Control 17(2):443–458MathSciNetCrossRefGoogle Scholar
  9. Omar HM, Nayfeh AH (2003) Gain scheduling feedback control for tower cranes. J Vib Control 9(3–4):399–418zbMATHGoogle Scholar
  10. Omar HM, Nayfeh AH (2004) Gain scheduling feedback control of tower cranes with friction compensation. J Vib Contr 10(2):269–289CrossRefGoogle Scholar
  11. Sato K, Sakawa Y (1988) Modelling and control of a flexible rotary crane. Int J Control 48(5):2085–2105MathSciNetCrossRefGoogle Scholar
  12. Sakawa Y, Nakazumi A (1985) Modeling and control of a rotary crane. J Dyn Syst Meas Control-Trans ASME 107(3):200–206CrossRefGoogle Scholar
  13. Sakawa Y, Shindo Y, Hashimoto Y (1981) Optimal control of a rotary crane. J Optim Theor Appl 35(4):535–557MathSciNetCrossRefGoogle Scholar
  14. Yoshimoto T, Sakawa Y (1989) Modelling and control of a rotary crane with a flexible joint. Optimal Contr Appl Methods 10(1):21–38MathSciNetCrossRefGoogle Scholar
  15. Zameroski D, Starr G, Wood J et al (2008) Rapid swing-free transport of nonlinear payloads using dynamic programming. J Dyn Syst Meas Contr Trans ASME 130(4):041001CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringPusan National UniversityBusanKorea (Republic of)

Personalised recommendations