Advertisement

Molecular and Functional Characterization of Beneficial Bacteria Associated with AMF Spores

  • Monica Agnolucci
  • Alessandra Turrini
  • Manuela GiovannettiEmail author
Chapter
Part of the Rhizosphere Biology book series (RHBIO)

Abstract

In the years to come, a major challenge for agriculture will be the implementation of sustainable intensification of agricultural practice, to ensure sufficient food production for the growing global population and to reduce chemical and energy inputs. This aim may be pursued by promoting the efficient use of beneficial soil microorganisms that play fundamental roles in plant growth and health. Among them, arbuscular mycorrhizal fungi (AMF), and their associated microbiota, can be considered biofertilizers, bioenhancers, and biocontrol agents, showing diverse plant growth-promoting (PGP) properties. Here we focus on approaches for the study of the identity and function of bacteria associated with AMF spores, referred to as spore-associated bacteria (SAB). Culture-independent methods are essential for the identification of their diversity; however, only culture-dependent approaches allow the determination of SAB functional roles, and the selection of the best performing strains, to be tested in laboratory experiments, as well as in the field. The discovery of SAB functional activities, e.g., phosphate solubilization and nitrogen fixation, as well as production of phytohormones, siderophores, and antibiotics, is opening new avenues for their targeted management in agriculture. In this chapter the approaches, techniques, and results relevant to culture-independent and culture-dependent studies on beneficial SAB will be reviewed. Significant case studies dealing with SAB utilization as inoculants in experimental trials will be discussed, with the aim of prospecting their utilization, individually or in specially designed multifunctional consortia, in sustainable and innovative food production systems.

Keywords

Beneficial bacteria Plant growth-promoting bacteria, PGPB Spore-associated bacteria, SAB Phosphate-solubilizing bacteria Biofertilizers Biostimulants Bioenhancers Arbuscular mycorrhizal fungi Mycorrhizal symbiosis Mycorrhizosphere Sporosphere Siderophore production 

Notes

Acknowledgments

This work was funded by a University of Pisa grant (PRA-2015 “Incremento del valore nutraceutico di piante alimentari attraverso l’uso di microrganismi benefici,” Progetti di Ricerca di Ateneo).

References

  1. Agnolucci M, Battini F, Cristani C, Giovannetti M (2015) Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biol Fertil Soils 51:379–389.  https://doi.org/10.1007/s00374-014-0989-5 CrossRefGoogle Scholar
  2. Ames RN, Mihara KL, Bayne HG (1989) Chitin-decomposing actynomycetes associated with a vesicular–arbuscular mycorrhizal fungus from a calcareous soil. New Phytol 111:67–71.  https://doi.org/10.1111/j.1469-8137.1989.tb04219.x CrossRefGoogle Scholar
  3. Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677Google Scholar
  4. Artursson V, Jansson JK (2003) Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Appl Environ Microbiol 69:6208–6215.  https://doi.org/10.1128/AEM.69.10.6208-6215.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Azcón R (1987) Germination and hyphal growth of Glomus mosseae in vitro: effects of rhizosphere bacteria and cell-free culture media. Soil Biol Biochem 19:417–419.  https://doi.org/10.1016/0038-0717(87)90032-0 CrossRefGoogle Scholar
  6. Azcón R (1989) Selective interaction between free-living rhizosphere bacteria and vesicular arbuscular mycorrhizal fungi. Soil Biol Biochem 21:639–644.  https://doi.org/10.1016/0038-0717(89)90057-6 CrossRefGoogle Scholar
  7. Barea JM, Azcón R, Azcón-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351.  https://doi.org/10.1023/A:1020588701325 CrossRefPubMedGoogle Scholar
  8. Battini F, Bernardi R, Turrini A, Agnolucci M, Giovannetti M (2016a) Rhizophagus intraradices or its associated bacteria affect gene expression of key enzymes involved in the rosmarinic acid biosynthetic pathway of basil. Mycorrhiza 26:699–707.  https://doi.org/10.1007/s00572-016-0707-2 CrossRefPubMedGoogle Scholar
  9. Battini F, Cristani C, Giovannetti M, Agnolucci M (2016b) Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices. Microbiol Res 183:68–79.  https://doi.org/10.1016/j.micres.2015.11.012 CrossRefPubMedGoogle Scholar
  10. Battini F, Turrini A, Quartacci M, Malorgio F, Sgherri C, Picciarelli P, Pardossi A, Giovannetti M, Agnolucci M (2016c) Dual inoculation with AMF and associated bacteria improves nutraceutical value of sweet basil grown under commercial conditions. Agrochimica 60:81–99.  https://doi.org/10.12871/0021857201623 CrossRefGoogle Scholar
  11. Battini F, Grønlund M, Agnolucci M, Giovannetti M, Jakobsen I (2017) Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci Rep 7(4686).  https://doi.org/10.1038/s41598-017-04959-0
  12. Berta G, Copetta A, Gamalero E, Bona E, Cesaro P, Scarafoni A, D'Agostino G (2014) Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth-promoting pseudomonad in the field. Mycorrhiza 24:161–170.  https://doi.org/10.1007/s00572-013-0523-x CrossRefPubMedGoogle Scholar
  13. Bharadwaj DP, Lundquist PO, Alström S (2008a) Arbuscular mycorrhizal fungal spore-associated bacteria affect mycorrhizal colonization, plant growth and potato pathogens. Soil Biol Biochem 40:2494–2501.  https://doi.org/10.1016/j.soilbio.2008.06.012 CrossRefGoogle Scholar
  14. Bharadwaj DP, Lundquist PO, Persson P, Alström S (2008b) Evidence for specificity of cultivable bacteria associated with arbuscular mycorrhizal fungal spores. FEMS Microbiol Ecol 65:310–322.  https://doi.org/10.1111/j.1574-6941.2008.00515.x CrossRefPubMedGoogle Scholar
  15. Bianciotto V, Bandi CD, Minerdi M, Sironi H, Tichy V, Bonfante P (1996) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010PubMedPubMedCentralGoogle Scholar
  16. Bidondo LF, Silvani V, Colombo R, Pérgola M, Bompadre J, Godeas A (2011) Pre-symbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biol Biochem 43:1866–1872.  https://doi.org/10.1016/j.soilbio.2011.05.004 CrossRefGoogle Scholar
  17. Bona E, Lingua G, Manassero P, Cantamessa S, Marsano F, Todeschini V, Copetta A, D’Agostino G, Massa N, Avidano L, Gamalero E, Berta G (2015) AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 25:181–193.  https://doi.org/10.1007/s00572-014-0599-y CrossRefPubMedGoogle Scholar
  18. Budi SW, van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soil-borne fungal pathogens. Appl Environ Microbiol 65:5148–5150PubMedPubMedCentralGoogle Scholar
  19. Calvet C, Barea JM, Pera J (1992) In vitro interactions between the vesicular-arbuscular mycorrhizal fungus Glomus mosseae and some saprophytic fungi isolated from organic substrates. Soil Biol Biochem 24:775–780.  https://doi.org/10.1016/0038-0717(92)90252-S CrossRefGoogle Scholar
  20. Carpenter-Boggs L, Loynachan TE, Stahl PD (1995) Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Boil Biochem 27:1445–1451.  https://doi.org/10.1016/0038-0717(95)00075-P CrossRefGoogle Scholar
  21. Casieri L, Ait Lahmidi N, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, Courty P-E, Garcia K, Charbonnier M, Delteil A, Brun A, Zimmermann S, Plassard C, Wipf D (2013) Biotrophic transportome in mutualistic plant-fungal interactions. Mycorrhiza 23:597–625.  https://doi.org/10.1007/s00572-013-0496-9 CrossRefPubMedGoogle Scholar
  22. Citernesi AS, Fortuna P, Filippi C, Bagnoli G, Giovannetti M (1996) The occurrence of antagonistic bacteria in Glomus mosseae pot cultures. Agronomie 16:671–677CrossRefGoogle Scholar
  23. Copetta A, Bardi L, Bertolone E, Berta G (2011) Fruit production and quality of tomato plants (Solanum lycopersicum L.) are affected by green compost and arbuscular mycorrhizal fungi. Plant Biosyst 145:106–115.  https://doi.org/10.1080/11263504.2010.539781 CrossRefGoogle Scholar
  24. Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Chang 19:292–305.  https://doi.org/10.1016/j.gloenvcha.2008.10.009 CrossRefGoogle Scholar
  25. Cruz AF, Horii S, Ochiai S, Yasuda A, Ishii T (2008) Isolation and analysis of bacteria associated with spores of Gigaspora margarita. J Appl Microbiol 104:1711–1717.  https://doi.org/10.1111/j.1365-2672.2007.03695.x CrossRefPubMedGoogle Scholar
  26. Davidson J (1988) Plant beneficial bacteria. Nat Biotechnol 6:282–286.  https://doi.org/10.1038/nbt0388-282 CrossRefGoogle Scholar
  27. Desirò A, Salvioli A, Ngonkeu EL, Mondo SJ, Epis S, Faccio A, Kaech A, Pawlowska TE, Bonfante P (2014) Detection of a novel intracellular microbiome hosted in arbuscular mycorrhizal fungi. ISME J 8:257–270.  https://doi.org/10.1038/ismej.2013.151 CrossRefPubMedGoogle Scholar
  28. Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant–microbe interactions. Antonie Van Leeuwenhoek 106:85–125.  https://doi.org/10.1007/s10482-013-0095-y CrossRefPubMedGoogle Scholar
  29. Edgar RC (2004a) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma 5:113.  https://doi.org/10.1186/1471-2105-5-113 CrossRefGoogle Scholar
  30. Edgar RC (2004b) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  31. FAO (2011). Save and grow. A policymaker’s guide to the sustainable intensification of smallholder crop production. FAO, RomeGoogle Scholar
  32. Filippi C, Bagnoli G, Citernesi AS, Giovannetti M (1998) Ultrastructural spatial distribution of bacteria associated with sporocarps of Glomus mosseae. Symbiosis 24:1–12Google Scholar
  33. Frey-Klett P, Garbaye JA, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36.  https://doi.org/10.1111/j.1469-8137.2007.02191.x CrossRefGoogle Scholar
  34. Gerdermann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244.  https://doi.org/10.1016/S0007-1536(63)80079-0 CrossRefGoogle Scholar
  35. Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530.  https://doi.org/10.1007/s00572-010-0333-3 CrossRefPubMedGoogle Scholar
  36. Giovannetti M (2000) Spore germination and pre-symbiotic mycelial growth. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizae: physiology and function. Kluwer Academic, Dordrecht, pp 47–68CrossRefGoogle Scholar
  37. Giovannetti M, Avio L, Sbrana C (2010) Fungal spore germination and pre-symbiotic mycelial growth–physiological and genetic aspects. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 3–32CrossRefGoogle Scholar
  38. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117.  https://doi.org/10.1139/m95-015 CrossRefGoogle Scholar
  39. Gopal S, Chandrasekaran M, Shagol C, Kim K, Sa T (2012) Spore associated bacteria (SAB) of arbuscular mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR) increase nutrient uptake and plant grow thunder stress conditions. Korean J Soil Sci Fertil 45:582–592.  https://doi.org/10.7745/KJSSF.2012.45.4.582 CrossRefGoogle Scholar
  40. Gruhn P, Goletti F, Yudelman M (2000) Integrated nutrient management, soil fertility, and sustainable agriculture: current issues and future challenges. International Food Policy Research Institute, Washington, DCGoogle Scholar
  41. Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008) Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-deficient soil under greenhouse conditions. Appl Soil Ecol 40:510–517.  https://doi.org/10.1016/j.apsoil.2008.08.001 CrossRefGoogle Scholar
  42. Heravi KM, Shali A, Naghibzadeh N, Ahmadian G (2014) Characterization of cis-acting elements residing in the chitinase promoter of Bacillus pumilus SG2. World J Microbiol Biotechnol 30:1491–1499.  https://doi.org/10.1007/s11274-013-1569-9 CrossRefPubMedGoogle Scholar
  43. Hildebrandt U, Ouziad F, Marner F-JJ, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267.  https://doi.org/10.1111/j.1574-6968.2005.00027.x CrossRefPubMedGoogle Scholar
  44. Islam MT, Deora A, Hashidoko Y, Rahman A, Ito T, Tahara S (2007) Isolation and identification of potential phosphate solubilizing bacteria from the rhizoplane of Oryza sativa L. cv. BR29 of Bangladesh. Z Natutforsch C 62:103–110.  https://doi.org/10.1515/znc-2007-1-218 CrossRefGoogle Scholar
  45. Jorquera MA, Hernández MT, Rengeln Z, Marschner P, De la Luz Mora M (2008) Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025–1034.  https://doi.org/10.1007/s00374-008-0288-0 CrossRefGoogle Scholar
  46. Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trensd Plant Sci 10:22–29.  https://doi.org/10.1016/j.tplants.2004.12.003 CrossRefGoogle Scholar
  47. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120.  https://doi.org/10.1007/BF01731581 CrossRefPubMedGoogle Scholar
  48. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175Google Scholar
  49. Lecomte J, St-Arnaud M, Hijri M (2011) Isolation and identification of soil bacteria growing at the expense of arbuscular mycorrhizal fungi. FEMS Microbiol Lett 317:43–51.  https://doi.org/10.1111/j.1574-6968.2011.02209.x CrossRefPubMedGoogle Scholar
  50. Li B, Ravnskov S, Xie G, Larsen J (2007) Biocontrol of Pythium damping-off in cucumber by arbuscular mycorrhiza-associated bacteria from the genus Paenibacillus. BioControl 52:863–875.  https://doi.org/10.1007/s10526-007-9076-2 CrossRefGoogle Scholar
  51. Lingua G, Bona E, Manassero P, Marsano F, Todeschini V, Cantamessa S, Copetta A, D’Agostino G, Gamalero E, Berta G (2013) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. Selva) in conditions of reduced fertilization. Int J Mol Sci 14:16207–16225.  https://doi.org/10.3390/ijms140816207 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Liu C-Y, Srivastava AK, Zhang D-J, Zou Y-N, Wu Q-N (2016) Exogenous phytohormones and mycorrhizas modulate root hair configuration in trifoliate orange. Not Bot Hortic Agrobo 44:548–556.  https://doi.org/10.15835/nbha44210540 CrossRefGoogle Scholar
  53. Long L, Zhu H, Yao Q, Ai Y (2008) Analysis of bacterial communities associated with spores of Gigaspora margarita and Gigaspora rosea. Plant Soil 310:1–9.  https://doi.org/10.1007/s11104-008-9611-7 CrossRefGoogle Scholar
  54. Louden BC, Haarmann D, Lynne AM (2011) Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ 12:51–53.  https://doi.org/10.1128/jmbe.v12i1.249 CrossRefPubMedPubMedCentralGoogle Scholar
  55. MacDonald RM, Chandler MR (1981) Bacterium-like organelles in vesicular-arbuscular mycorrhizal fungus Glomus caledonium. New Phytol 89:241–246.  https://doi.org/10.1111/j.1469-8137.1981.tb07486.x CrossRefGoogle Scholar
  56. MacDonald RM, Chandler MR, Mosse B (1982) The occurrence of bacterium-like organelles in vesicular–arbuscular mycorrhizal fungi. New Phytol 90:659–663.  https://doi.org/10.1111/j.1469-8137.1982.tb03275.x CrossRefGoogle Scholar
  57. Maia LC, Kimbrough JW (1998) Ultrastructural studies of spores and hypha of a Glomus species. Int J Plant Sci 159:581–589.  https://doi.org/10.1086/297576 CrossRefGoogle Scholar
  58. Mayo K, Davis RE, Motta J (1986) Stimulation of germination of spores of Glomus versiforme by spore-associated bacteria. Mycologia 78:426–431.  https://doi.org/10.2307/3793046 CrossRefGoogle Scholar
  59. Mohandas S, Poovarasan S, Panneerselvam P, Saritha B, Upreti KK, Kamal R, Sita T (2013) Guava (Psidium guajava L.) rhizosphere Glomus mosseae spores harbor actinomycetes with growth promoting and antifungal attributes. SciHortic Amst 150:371–376.  https://doi.org/10.1016/j.scienta.2012.11.019 CrossRefGoogle Scholar
  60. Mongodin EF, Shapir N, Daugherty SC, DeBoy RT, Emerson JB, Shvartzbeyn A, Radune D, Vamathevan J, Riggs F, Grinberg V, Khouri H, Wackett LP, Nelson KE, Sadowsky MJ (2006) Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet 2:2094–2106.  https://doi.org/10.1371/journal.pgen.0020214 CrossRefGoogle Scholar
  61. Mosse B (1959) The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing vesicular-arbuscular mycorrhiza. Trans Br Mycol Soc 42:273–286.  https://doi.org/10.1016/S0007-1536(56)80033-8 CrossRefGoogle Scholar
  62. Mosse B (1970) Honey-coloured sessile Endogone spores. II. Changes in fine structure during spore development. Arch Mikrobiol 74:146–159.  https://doi.org/10.1007/BF00446901 CrossRefGoogle Scholar
  63. Mugnier J, Mosse B (1987) Spore germination and viability of a vesicular arbuscular mycorrhizal fungus, Glomus mosseae. Trans Br Mycol Soc 88:411–413.  https://doi.org/10.1016/S0007-1536(87)80018-9 CrossRefGoogle Scholar
  64. Naumann M, Schüßler A, Bonfante P (2010) The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the mollicutes. ISME J 4:862–871.  https://doi.org/10.1038/ismej.2010.21 CrossRefPubMedGoogle Scholar
  65. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270.  https://doi.org/10.1111/j.1574-6968.1999.tb13383.x CrossRefPubMedGoogle Scholar
  66. Ordoñez YM, Fernandez BR, Lara LS, Rodriguez A, Uribe-Vélez D, Sanders IR (2016) Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outside the root and in the presence of native microbial communities. PLoS One 11:e0154438.  https://doi.org/10.1371/journal.pone.0154438 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801.  https://doi.org/10.1128/AEM.68.8.3795-3801.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Pepe A, Sbrana C, Ferrol N, Giovannetti M (2017) An in vivo whole-plant experimental system for the analysis of gene expression in extraradical mycorrhizal mycelium. Mycorrhiza 27:659–668.  https://doi.org/10.1007/s00572-017-0779-7 CrossRefPubMedGoogle Scholar
  69. Pérez-Miranda S, Cabirol N, George-Téllez R, Zamudio-Rivera LS, Fernández FJ (2007) O-CAS, a fast and universal method for siderophore detection. J Microbiol Method 70:127–131.  https://doi.org/10.1016/j.mimet.2007.03.023 CrossRefGoogle Scholar
  70. Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P (2009) Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19:81–90.  https://doi.org/10.1007/s00572-008-0205-2 CrossRefPubMedGoogle Scholar
  71. Ravnskov S, Jakobsen I (1999) Effects of Pseudomonas fluorescens DF57 on growth and P uptake of two arbuscular mycorrhizal fungi in symbiosis with cucumber. Mycorrhiza 8:329–334.  https://doi.org/10.1007/s005720050254 CrossRefGoogle Scholar
  72. Ravnskov S, Larsen J, Jakobsen I (2002) Phosphorus uptake of an arbuscular mycorrhizal fungus is not affected by the biocontrol bacterium Burkholderia cepacia. Soil Biol Biochem 34:1875–1881.  https://doi.org/10.1016/S0038-0717(02)00201-8 CrossRefGoogle Scholar
  73. Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A, Aragno M (2005) Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Appl Environ Microbiol 71:6673–6679.  https://doi.org/10.1128/AEM.71.11.6673-6679.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Rokhbakhsh-Zamin F, Sachdev D, Kazemi-Pour N, Engineer A, Pardesi KR, Zinjarde S, Chopade BA (2011) Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J Microbiol Biotechnol 21:556–566.  https://doi.org/10.4014/jmb.1012.12006 CrossRefPubMedGoogle Scholar
  75. Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, Pascale SD, Bonini P, Colla G (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108.  https://doi.org/10.1016/j.scienta.2015.09.002 CrossRefGoogle Scholar
  76. Sbrana C, Avio L, Giovannetti M (2014) Beneficial mycorrhizal symbionts affecting the production of health-promoting phytochemicals. Electrophoresis 35:1535–1546.  https://doi.org/10.1002/elps.201300568 CrossRefPubMedGoogle Scholar
  77. Scheublin TR, Sanders IR, Keel C, van der Meer JR (2010) Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J 4:752–763.  https://doi.org/10.1038/ismej.2010.5 CrossRefPubMedGoogle Scholar
  78. Seipke RF, Kaltenpoth M, Hutchings MI (2012) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36:862–876.  https://doi.org/10.1111/j.1574-6976.2011.00313.x CrossRefGoogle Scholar
  79. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  80. Smith FA, Smith SE (1997) Structural diversity in (vesicular)–arbuscular mycorrhizal symbioses. New Phytol 137:373–388.  https://doi.org/10.1046/j.1469-8137.1997.00848.x CrossRefGoogle Scholar
  81. Souza CP, Burbano-Rosero EM, Almeida BC, Martins GG, Albertini LS, Rivera ING (2009) Culture medium for isolating chitinolytic bacteria from seawater and plankton. World J Microbiol Biotechnol 25:2079–2082.  https://doi.org/10.1007/s11274-009-0098-z CrossRefGoogle Scholar
  82. Spatafora, J.W., Chang, Y., Benny, G.L., Lazarus, K., Smith, M.E., Berbee, M.L., Bonito, G., .Corradi, N., Grigoriev, I., Gryganskyi, A., James, T.Y., O’Donnell, K., Roberson, R.W., Taylor, T.N., Uehlin, J., Vilgalys, R., White, M.M., Stajich, J.E. (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108: 1028–1046  https://doi.org/10.1007/s00374-017-1254-5 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Tchan YT (1984) Azotobacteraceae. In: Krieg N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wikins, London, pp 219–225Google Scholar
  84. Thomashow LS, Weller DM, Bonsall RF, Pierson LS (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56:908–912PubMedPubMedCentralGoogle Scholar
  85. Tylka GL, Hussey RS, Roncadori RW (1991) Axenic germination of vesicular–arbuscular mycorrhizal fungi: effects of selected Streptomyces species. Phytopathology 81:754–759CrossRefGoogle Scholar
  86. Ueda T, Suga Y, Yahiro N, Matsuguchi T (1995) Phylogeny of sym plasmids of rhizobia by PCR-based sequencing of a nodC segment. J Bacteriol 177:468–472.  https://doi.org/10.1128/jb.177.2.468-472.1995 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Walley FL, Germida JJ (1996) Failure to decontaminate Glomus clarum NT4 spores is due to spore wall-associated bacteria. Mycorrhiza 6:43–49.  https://doi.org/10.1007/s005720050104 CrossRefGoogle Scholar
  88. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703.  https://doi.org/10.1128/jb.173.2.697-703.1991 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511.  https://doi.org/10.1093/jexbot/52.suppl_1.487 CrossRefPubMedGoogle Scholar
  90. Will ME, Sylvia DM (1990) Interaction of rhizosphere bacteria, fertilizer, and vesicular-arbuscular mycorrhizal fungi with sea oats. Appl Environ Microbiol 56:2073–2079PubMedPubMedCentralGoogle Scholar
  91. Xavier LJC, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35:471–478.  https://doi.org/10.1016/S0038-0717(03)00003-8 CrossRefGoogle Scholar
  92. Yu Z, Morrison M (2004) Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 70:4800–4806.  https://doi.org/10.1128/AEM.70.8.4800-4806.2004 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Monica Agnolucci
    • 1
  • Alessandra Turrini
    • 1
  • Manuela Giovannetti
    • 1
    Email author
  1. 1.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly

Personalised recommendations